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Sustainable socio-economic development largely depends on the sustainability of the energy supply from economic, 

environmental, and public health perspectives. Fossil fuel combustion only meets the first element of this equation and is hence 

rendered unsustainable. Biofuels are advantageous from a public health perspective, but their environmental and economic 

sustainability might be questioned considering the conflicts surrounding their feedstocks, including land use change and fuel vs. 

food conflict. Therefore, it is imperative to put more effort into addressing the downsides of biofuel production using advanced 

technologies, such as nanotechnology. In light of that, this review strives to scrutinize the latest developments in the application 

of nanotechnology in producing biodiesel, a promising alternative to fossil diesel with proven environmental and health benefits. 

The main focus is placed on nanotechnology applications in the feedstock production stage. First, the latest findings concerning 

the application of nanomaterials as nanofertilizers and nanopesticides to improve the performance of oil crops are presented and 

critically discussed. Then, the most promising results reported recently on applying nanotechnology to boost biomass and oil 

production by microalgae and facilitating microalgae harvesting are reviewed and mechanistically explained. Finally, the 

promises held by nanomaterials to enhance animal fat production in livestock, poultry, and aquaculture systems are elaborated. 

Despite the favorable features of using nanotechnology in biodiesel feedstock production, the presence of nanoparticles in living 

systems is also associated with important health and environmental challenges, which are critically covered and discussed in 

this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

➢The potential of nanotechnology in biodiesel 

feedstock production is critically discussed. 

➢The use of nanofertilizers and nanopesticides in 

oil crop breeding is fully illustrated. 

➢Nanomaterials for boosting microalgal oil yield 

and biomass harvesting are scrutinized. 

➢Health/ecological aspects of nanomaterials in 

biodiesel feedstock production are covered. 
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Abbreviations  

CNM Carbon-based nanomaterials 

CNTs Carbon nanotubes 

DNA Deoxyribonucleic acid 

ENPs Engineered nanoparticles 

Fe3O4 Iron(II,III) oxide 

MWCNTs Multi-wall carbon nanotubes. 

ROS Reactive oxygen species 

ZVI Zero-valent iron 

CNM Carbon-based nanomaterials 

 

using nonmaterial (<100 nm in size) is regarded as a cost-effective tool 

(Abdin et al., 2013). Compared with an equal weight of macroscale 
materials, not only do nanoscale matters have a surface area of several 

hundred times, but also their strength, tenacity, electricity, and elasticity are 

enhanced  (Zhang et al., 2013). Because of the unique properties of 
nanomaterials, by the early 2000s, nanotechnology found its way into the 

marketplace and allowed manufacturers to improve their production 

(Garimella and Eltorai, 2017). Focusing on nanotechnology applications in 
the biodiesel production chain, there is a significant potential to improve 

feedstock production. Specifically, nanotechnology can enhance feedstock 

yield in producing vegetables as feedstock. This improvement can be 
attributed to the capacity of nanomaterials to more efficiently supply 

nutrients and pesticides for farming purposes (Shang et al., 2019). Studies 

show that nanomaterials can increase biomass growth and physiological 
processes such as photosynthetic activity, nitrogen metabolism, and protein 

level in microalgal species (Eroglu et al., 2013). However, the presence of 

nanoparticles in living systems is attributed to serious health and 

environmental challenges. 

This work offers a state-of-the-art review of the application of 

nanotechnology for biodiesel feedstock production. First, it discusses the 
opportunities  and limitations of nanotechnology applications in vegetable 

oil production. It then critically explores the nanotechnology applications 

and their challenges in microalgal oil production. Third, recent findings 
about the application of nanotechnology in animal fat production are 

scrutinized. To our knowledge, this paper is the most comprehensive work 

providing a thorough picture of the opportunities and limitations of 
nanotechnology applications in biodiesel feedstock production. Table 1 

compares this review paper with previous review papers published on the 

nanotechnology application for biodiesel feedstock production. 
 

 

 
 

 
 
 

 
 

1. Introduction 
 

Although most scenarios developed by the governments are currently 

designed based on the fact that demands for energy in various sectors are on 

the rise, there are many arguments concerning how the role of fossil fuels 
should be minimized given the undesirable environmental and health effects, 

with global warming and climate change placed at their epicenter (Zhou and 

Feng, 2017). Sustainable production of eco-friendly alternatives to fossil fuels 
is the main remedy to this challenge (Dueso et al., 2018). Besides offering 

improved environmental impacts, biofuels are also associated with other 

benefits, including rural job creation, foreign exchange savings, and greater 
energy security (Bluhm et al., 2012). 

 Biodiesel is considered the most promising and acceptable among biofuels 

due to its reproducibility, biodegradability, non-toxicity, and sulfur-free nature. 
Biodiesel highly resembles diesel in terms of physicochemical properties, 

eliminating the need for considerable engine modifications. Biodiesel 

combustion in diesel engines, either in pure or blended form with diesel, 
reduces some of the major exhaust emissions, particularly particulate matter 

and carbon monoxide (Nabi et al., 2009). The production cycle of this 

alternative fuel, including oil feedstock production, oil extraction, and 
biodiesel production, is also a well-understood process with available 

technologies at a commercial scale (Nigam and Singh, 2011).  

Generally, biodiesel is produced from three main generations of feedstock, 
including first-generation feedstock, i.e., vegetable oil  (Demirbaş, 2002), 

second-generation feedstock, i.e., animal fats and waste oils (Goodrum et al., 
2003), and third-generation feedstocks, i.e., microbial and microalgal oil (Ray 

et al., 2022). Oily vegetables and crops (i.e., first-generation) are the main 

feedstock for commercial biodiesel production (Demirbas, 2002). More than 
350 oily vegetables and crops are recognized under different soil and climate 

conditions as feedstocks for biodiesel production (Ghazali et al., 2015). 

Vegetable oils are attractive not only because of their renewability but also 
because they hold an energetic content close to diesel fuel (Demirbas, 2005). 

Nevertheless, these feedstocks face serious criticism as their production has led 

to global land use change (deforestation) and food vs. fuel conflict. Despite the 
emergence of higher-generation biodiesel feedstock and its criticism, the 

biodiesel production industry worldwide relies predominantly on oily 

vegetables and crops. Therefore, efforts are focused on boosting their 
productivity to diminish their negative environmental footprints.  

Traditionally, fertilizers and pesticides are used to increase crop yield (Zhao 

et al., 2016a), but they are also largely attributed to serious human health and 
environmental burdens (Sharma and Singhvi, 2017). A major second-

generation biodiesel feedstock is animal fat. This feedstock is generally 

regarded as a more sustainable option than the first-generation feedstock from 
both environmental and economic points of view, but some health concerns, 

for example, the transmission risk of bovine spongiform encephalopathy by 

beef tallow has limited substantial biodiesel production from this low-cost 
feedstock. Finally, microalgae, the main third-generation biodiesel feedstock, 

offers many advantages, such as high lipid contents, high growth rate, and 

photosynthesis rate (Duran et al., 2018). Microalgae can also grow in non-
agricultural land with waste and saline waters (Zhu et al., 2017) without 

pesticides or herbicides (Chiaramonti et al., 2017). However, increasing 

microalgal biomass and oil yield and enhancing algal biomass harvesting are 

still among the main challenges compromising the overall feasibility of using 

this promising biodiesel feedstock.  

Among the technologies offered to overcome the obstacles faced in 
enhancing  the  biodiesel  feedstocks, “nanotechnology” or,  more  specifically,  

 

 

2. Nanotechnology applications in feedstock production 

 

Based on feedstocks, biodiesel is classified into five different 
generations/categories (Fig. 1). All these oil feedstocks face numerous 

production challenges. For instance, applying chemical fertilizers and 

pesticides in vegetable oil production causes significant health and 
environmental problems. Some of the mentioned challenges can be 

potentially resolved using nanotechnology. 

    
2.1. Vegetable oils 

 

Generally, oily vegetables and crops (edible and non-edible) are the main 
feedstocks for biodiesel production. Over 350 oily vegetables and crops are 

currently cultivated worldwide as biodiesel feedstocks (Ghazali et al., 

2015). Edible vegetable oils are renewable resources with energy values 
close to diesel fuel (Demirbas, 2005). However, their application in the 

biodiesel industry has triggered serious competition with food commodities  

 
 

 

 
 

 

 
 

Table 1. 

Comparison between the current review paper and previously published review papers on 

the application of nanotechnology in biodiesel feedstock production. 

 

Type of feedstock 
Reference 

Vegetable oils Algal oils Animal fats 

✗ ✓ ✗ Mathimani and Mallick (2018) 

✗ ✓ ✗ Nguyen et al. (2019) 

✗ ✓ ✗ Goh et al. (2019) 

✗ ✓ ✗ Yin et al. (2020) 

✗ ✓ ✗ Sarkar et al. (2021) 

✗ ✓ ✗ Zhao et al. (2022) 

✗ ✓ ✗ Lau et al. (2022) 

✓ ✗ ✗ Vignesh et al. (2022) 

✗ ✓ ✗ Reetu et al. (2023) 

✗ ✓ ✗ Rana and Prajapati (2023) 

✓ ✓ ✓ This review 
 

✓: Included, ✗: Not-included  
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Fig. 1. Biodiesel classification based on feedstock. 

 

 

production for land and water resources. Despite this unfavorable competition 

and the introduction of second- and third-generation feedstocks to address the 
challenge, edible oils, oily vegetables, and crops still retain the highest share in 

biodiesel production (Fig. 2). 

Efforts have been made to increase the yield of oily vegetables and crops. 
Traditionally, chemical species (e.g., fertilizers, herbicides, and pesticides) 

have been used effectively to improve crop yield (Mirbakhsh, 2023). However, 

applying chemical species is not sustainable because of their environmental and 

health impacts (Vijayakumar et al., 2023). Alternatively, innovative 

nanotechnology-based approaches have been developed to maximize the 

feedstock yield (farm output yield) using minimal resources. Figure 3 depicts 
the potential applications of nanotechnology in agriculture.   

Generally, the insertion of nanoscale materials into plants can provide the 

programmed, time-controlled release of agrochemicals (e.g., fertilizers, 
pesticides, and herbicides) as well as target-specific delivery of biomolecules 

(e.g., nucleotides, proteins, and activators) (Fraceto et al., 2016; Sohrabi et al., 

2023). The application of nanotechnology in the production of oil crops fits 
into two major categories: nanofertilizers (Liu and Lal, 2014; Yang et al., 2023) 

and nanopesticides (Guan et al., 2010). This section presents a comprehensive 
examination of the advantages and disadvantages associated with using 

nanoparticles in agriculture. Understanding these factors is crucial for assessing 

the sustainability of nanoparticle applications in the production of biodiesel 
feedstock. 

 

2.1.1. Nanofertilizers 
 

Nanoparticles can significantly improve the agronomic and economic 

feasibility of vegetable oil feedstocks by acting as fertilizers or fertilizer 
enhancers (Liu and Lal, 2014; Mahapatra et al., 2022). In the former 

application, nanomaterials supply one or more nutrients a crop needs to 

promote its growth and yield (Dewdar et al., 2018). Compared to traditional 
fertilizers, some nanofertilizers are safe for beneficial soil microbiota and 

provide higher nutrient availability and lower nutrient run-off (Pandey, 2018; 

Kalwani et al., 2022). A summary of the effects of some macro/micronutrient 
nanofertilizers used to produce vegetable oil feedstocks is shown in Table 2. 

The second group of nanofertilizers (i.e., nanomaterial-enhanced fertilizers) 

contains engineered nanomaterials that can increase plant nutrient consumption 
(i.e., absorption, uptake, transport, and penetration) efficiency (Fig. 4) (Liu and 

Lal, 2015). These nanomaterials do not directly supply crops with nutrients 

while improving crop productivity, especially when co-applied with traditional 

fertilizers (Elsayed et al., 2022; Kumar et al., 2022a). The action mechanisms 

of the second nanofertilizer group include (i) binding to chemical fertilizers and 

facilitating their translocation into various plant organs, (ii) circulating (i.e., up, 
down, and radial movements) within the plant through symplastic or apoplastic 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 Fig. 2. Feedstock contribution to global biodiesel production (OECD/FAO, 2019).
 

 
 

pathways, (iii) modulating the absorption of soil chemical and microbial 

contents by plant, and (iv) penetrating plant cells through pore formation, 
endocytosis, plasmodesmata, and carrier proteins (Fig. 4). 

Applying nanoparticles (e.g., cupric oxide, iron oxide, and zinc oxide) 

may not be eco-friendly (Azam et al., 2022). Nanoparticles may complicate 
the soil ecosystem process (e.g., the carbon or nitrogen cycle) by 

suppressing the growth of nematode Caenorhabditis elegans and 

earthworm Eisenia fetida, decreasing the diversity and population of the 

soil microbial community, and poisoning higher trophic groups in the soil 

food web (e.g., grazers) (Rashid et al., 2017). Nanomaterials may also 

render phytotoxic effects based on nature, size, dose, and exposure time. 
For example, cupric oxide increases the rate of organic matter 

decomposition in the soil while inhibiting pollen germination, seed 

germination, and root growth of various Arabidopsis thaliana ecotypes 
(probably because of the production of reactive oxygen species (ROS)) 

(Guerriero and Cai, 2018). A high concentration of nanoparticles, 

especially ≥20 nm, in the root zone can decrease crop production yield by 
interfering with the uptake of nutrients and water (Usman et al., 2020). 

Besides soil nutrients and availability, crop yield is affected by soil 
pollution. Nanomaterials can extensively trap many soil and groundwater 

contaminants because of the large specific surface area (including 

microporous channels with network structures) and the high reactivity 
(Yang et al., 2016). Favorable engineered nanoparticles intended for in-situ 

remediation must show less toxicity, appropriate mobility within porous 

media, and sufficient lifetime and reactivity (Chen et al., 2017). Based on 
these criteria, nanoscale elemental or zero-valent metals (iron, nickel, and 

palladium) are considered promising adsorbents of transitional metals 

(arsenic and chromium) and persistent organic pollutants (Cecchin et al., 
2017; Babu et al., 2022). Fe-based nanoparticles are more economically 

feasible (simple removal and recyclability) for water remediation due to 

their magnetic properties (Cundy et al., 2008). For soil remediation, iron-
based nanoparticles (e.g., zero-valent iron (ZVI) nanoparticles) offer the 

unique advantage of being soil deliverable, while they are highly reactive 

to many plant-detrimental contaminants (heavy metals) (Zhao et al., 
2016b). The typical modification methods of ZVI nanoparticles include 

their immobilization onto suitable supports, surface modification, and 

admixtures of compatible metals with ZVI nanoparticles (Fig. 5) (Xue et 
al., 2018). 

Figure 6 presents a schematic diagram summarizing the preparation and 

application of stabilized ZVI nanoparticles for in-situ contaminated soil and 

groundwater remediations.   

Another iron-based nanoparticle is iron sulfide, which is chalcophilic in 

nature. This nanoparticle can remediate heavy metals (arsenic, cadmium, 
and chromium) due to its  ability to donate  electrons (releasing  iron2+ and 
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sulfur2-). The immobilization of humic acid through electrostatic adsorption 

and organic complexation further enriches surface functional groups on iron(ii) 

sulfide nanoparticles, while carboxymethyl cellulose is used as a stabilizer to 

prevent the agglomeration of the nanoparticles. The novel composite 

(carboxymethyl cellulose-iron(ii) sulfide@ humic acid) can then efficiently 
remediate chromium(VI) from contaminated soil (Fig. 7) (Tan et al., 2020). 

Despite significant agricultural productivity improvements, applying iron-

based nanoparticles may be challenging because of the loss of reactivity with 
aging (Fig. 8). During in-situ remediation of contaminated zones, the clustering 

tendency of ZVI nanoparticles reduces their mobility through soil pores by 

accelerating the deposition of soil particles (Cecchin et al., 2017). 
ZVI nanoparticles can be cytotoxic against some microbial species through 

iron2+ release, ROS generation, oxidative stress, and subsequent cell membrane 

disruption (Lefevre et al., 2016). Therefore, applying ZVI nanoparticles may 
knock out some important functional microorganisms for biogeochemical 

processes. At high concentrations, ZVI nanoparticles may decrease growth and 

aspiration in some plants by reducing the root adsorption efficiency of nutrients 
and water. This could be attributed to the accumulation of ZVI nanoparticles or 

iron3+ (the oxidation product of ZVI nanoparticles) on roots and/or the 

internalization of ZVI nanoparticles into root epidermal cells (Jiang et al., 
2018). In addition, ZVI nanoparticles may cause oxygen deficiency and iron2+-

induced reductive effects in soils, negatively affecting plant growth (Jiang et 

al.,    2018). More    specifically,     oxygen     depletion    affects    both    root 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
growth/survival and the rhizosphere microbial community (Lefevre et al., 

2016). Notably, the induction of oxidative stress by nanoparticles could be 

caused by the overexpression of ascorbate peroxidase, catalases, and 

superoxide dismutase when they enter plant tissues (Ding et al., 2017). 

The application of nanotechnology for soil remediation can be combined 
with bioremediation to overcome the challenges mentioned (Cecchin et al., 

2017). The developed technique, known as nanobioremediation, uses 

microbial or plant-derived nanoparticles (Yadav et al., 2017). The first step 
of nanobioremediation involves the application of biological nanoparticles 

at a concentration that is enough to bring the pollutants to an appropriate 

level for the biodegradation process (Usman et al., 2020). In the second 
step, microbial or phyto bioremediation ability is exploited to degrade 

various organic or inorganic pollutants (Hamedi et al., 2015). Through this 

strategy, the economic and/or environmental feasibilities of both mentioned 
remediation techniques are substantially improved. 

An alternative to nanoscale elemental or zero-valent metals in 

agriculture is carbon-based nanomaterials (CNM) such as carbon nanotubes 
(CNTs), fullerenes, carbon nanodots, carbon nanofibers, graphene oxides, 

carbon nanohorns, and carbon nano-dots (Aacharya and Chhipa, 2020). 

Figure 9 shows some CNMs with a growth-promoting effect on plants. 
These compounds have been extensively applied as plant growth regulators, 

pest detection and control agents, pesticide sorbents, and nutrient carriers 

in  agriculture (Table 3). The  engineering  of  nanoparticles  could further 

Fig. 3. The potential applications of nanotechnology in agriculture. Controlled released nanofertilizers increase crop growth, yield, and productivity through efficiently protecting the crop, allowing 

gene transfer (nano-based target delivery approach), contributing to precision farming via nanosensors and computerized controls platform, promoting plant stress tolerance, and soil enhancement. 

Adapted and redrawn from Shang et al. (2019). 
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Table 2. 

A summary of the effects of some macro/micronutrient nanofertilizers used to produce vegetable oil feedstocks. 

Nanoparticle 
Size 

(nm) 

Concentration 

(ppm) 
Nutrient provided 

Investigated plant oil feedstock 
Reference 

Species Effect 

Apatite 
18.9‒

20.3 
21.8 

Micro-nutrient 

(Iron) 
Soybean 

Increased the growth rate (32.6%) and seed yield 

(20.4%) compared to chemical fertilizer, i.e., Calcium 

dihydrogen phosphate 

Liu and Lal (2014) 

Calcium carbonate 20‒80 160 
Macro-nutrient 

(Calcium) 
Peanut Increased nutrient content in the roots and shoots Liu et al. (2005) 

Copper dioxide ˂50 10 
Micro-nutrient 

(Copper) 
Corn Increased plant growth by 51% Adhikari et al. (2016) 

Iron chelates - - - Soybean 
Significantly increased oleic acid when co-applied with 

farmyard manure 
Mohammadi (2015) 

Iron-humic - 32.6‒57.8 
Micro-nutrient 

(Iron) 
Soybean 

- Continuous long-term uptake of Fe 

- Increased shoot yield. 
Cieschi et al. (2019) 

Iron oxide - 500 
Micro-nutrient 

(Iron) 
Soybean 48% Increased grain yield by 48% Sheykhbaglou et al. (2010) 

NPK*-loaded chitosan 300‒750 10‒50 
Macro-nutrients 

(NPK) 
Coffee Increased plant height, leaf number, and leaf area Ha et al. (2019) 

Super-paramagnetic 

iron oxide 
20 30‒60 

Micro-nutrient 

(Iron) 
Soybean Increased chlorophyll levels Ghafariyan et al. (2013) 

Zinc oxide 20 80 
Micro-nutrient 

(Zinc) 
Corn 

Increased germination (17%), root length (25%), and dry 

biomass yield (12%) 
Esper Neto et al. (2020) 

Zinc oxide <100 - 
Micro-nutrient 

(Zinc) 
Corn Enhanced growth Adhikari et al. (2015) 

Zinc oxide 25 1,000 
Micro-nutrient 

(Zinc) 
Peanut 

Increased yield per plant (by 34%) compared to chelated 

bulk Zinc sulfate 
Prasad et al. (2012) 

Zinc oxide - 40‒400 
Micro-nutrient 

(Zinc) 
Soybean Increased seed yields up to 160 mg/kg Yusefi-Tanha et al. (2020) 

Zinc or Iron - 2000 
Micro-nutrient 

(Iron or Zinc) 
Corn 

Increased biomass, crude protein, and soluble 

carbohydrate concentration compared to chemical 

fertilizers counterparts 

Sharifi et al. (2016) 

 

* Nitrogen, phosphorous, and potassium. 

 

 

 

Fig. 4. The Mechanisms of nanoparticle absorption, uptake, transport, and penetration in plants. (A) Nanoparticle traits, (B) nanoparticle uptake by the plant, (C) nanoparticle movement within the 

plant, and (D) nanoparticle penetration into plant cells (Pérez-de-Luque, 2017). 
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Fig. 5. A schematic presentation of different ZVI nanoparticle

 
modification methods. (A)

 
Metal 

doping, (B)
 
surface modification, and

 
(C)

 
support deposition. Adapted and redrawn from Xue et 

al. (2018).
 

 
 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 6. A Schematic diagram on synthesis, application, transport, and fate of stabilized ZVI 

nanoparticles. Adapted and redrawn from Zhao et al. (2016b).
 

 
 

modify them for better performance. On this basis, functionalized nanocarbons 
show facilitated transportation  into  plant cells compared to nonfunctionalized 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 Fig. 7. The mechanisms for reducing chromium(VI) toxicity by composite materials. (1)
 chromium(VI) ion is adsorbed on the oxygen-containing functional groups of humic acid and 

is reduced. (2)
 
chromium(VI) ion is rapidly reduced into chromium(III) ion following its 

reaction with iron(ii) sulfide . (3)
 
Small amount of chromium(III) is adsorbed by humic acid. 

Adapted and redrawn from Tan et al. (2020).
 

 

 
 

 

 
 
 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Effect of aging on the reactivity of

 
ZVI nanoparticles. Adapted and redrawn from 

Cecchin et al. (2017). 
 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 
 

Fig. 9. Different carbon-based nanomaterials used in agriculture as plant growth promoters. 
 
 

nanocarbons. Like water-soluble nanoparticles, the growth-stimulating 

effects of functionalized nanocarbons are due to their ability to enhance 
water conduction in plants by reaching the tracheal elements of xylem 

vessels (Singh et al., 2018).  

According to Table 3, the effects of CNMs on agriculture yield 
significantly depend on plant species, environmental stresses (e.g., drought 

or soil contaminants), and the type and amount of the incorporated CNMs. 
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 These factors play critical roles in CNM-induced phytotoxicity at 

anatomical, morphological, physiological, cellular, and genetic levels (Verma 
et al., 2019). More specifically, mixed effects of the CNMs’ exposure on plants 

ranging from an increase in vegetative growth and yield of fruit/seed at lower 

concentrations of CNMs to the progressive decrease in these observations at 
higher concentrations of CNMs, have been documented (Table 3). In general, 

at lower concentrations, CNMs are effective in enhancing (i.e., water uptake, 

water transport, seed germination, nitrogenase, photosystem, and antioxidant 
activities), activating (i.e., water channels proteins), and promoting (i.e., 

nutrition absorption), but all these beneficiary effects could change when CNM 

concentration is raised. Unlike in-vitro studies, the chronic phytotoxicity of 
CNMs has not been extensively examined by field studies (Mukherjee et al., 

2016). It should be noted that soil physiological properties (e.g., soil 

components) modulate the toxicity of the incorporated CNM by affecting, for 
example, its reactivity and solubility (Mukherjee et al., 2016). This behavior 

further complicates the mechanistic understanding of cellular interactions 

between  CNM  and  plants. Moreover, little  is   known  about  the  effects  of 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

environmental factors on CNMs’ stability, the release of their metals 

moiety, and the leach of adsorbed contaminants from CNMs (Mukherjee et 
al., 2016). Another concern about CNM fate is its unknown potential for 

bioaccumulation and/or biomagnification (Sangeetha et al., 2017). In light 

of these, future research should encompass the adverse impacts of 
nanomaterials on plants. Those impacts can be classified into different 

categories, nanomaterial phytotoxicity, reducing germination rate of seeds, 

decreasing fresh and dry biomass and length of roots and shoots, altering 
photosynthesis process, enhancing chromatin condensation, increasing 

deoxyribonucleic acid (DNA) damage, reducing the transpiration rate, 

enhancing lipid peroxidation, up-and down-regulation of various stress-
related genes, and inducing plant cell apoptosis (Tripathi et al., 2017).  

By consuming plant materials contaminated by nanoparticles (e.g., 

cadmium, copper, iron, manganese, nickel, lead, and zinc) by animals and 
humans, the contamination could be further biomagnified throughout the 

food chain. The high reactivity and transportability of nanoparticles also 

raise safety concerns for workers in direct contact with the production and 

Table 3. 
An overview of all the studies involving carbon-based nanomaterials for cultivating plant oils.** 

 

Investigated plant oil feedstock Nanoparticle Size (nm) Concentration 

Domain of effect 

Reference 

Quantity Quality 

Bitter melon Fullerol 1.5‒5 4.7‒47.2 nM ✓* ✓ Kole et al. (2013) 

Cannabis sativa MWCNTs1 100 10‒50 mg/L ✓ ✗ Oloumi et al. (2018) 

Corn/Maize 

Fullerenol ~138 50‒400 mg/L - ✓ Liu et al. (2016a) 

MWCNTs 15‒40 25‒200 mg/L ✓ ✓ Lahiani et al. (2013) 

Water-soluble CNTs-COOH 10–20 20‒50 mg/L ✓ ✓ Srivastava and Rao (2014) 

Water-soluble carbon nano-dots ~3 1‒2 g/L ✗ ✗ Chen et al. (2016) 

MWCNTs - 50 µg/mL ✓ ✗/✓ Lahiani et al. (2017) 

Pristine MWCNTs 6‒9 5‒60 mg/L ✗/✓ - Tiwari et al. (2014) 

Sulfonated graphene - 50 mg/kg soil - ✗/✓ Ren et al. (2018) 

SWCNT2 1‒2 20 mg/L No No Yan et al. (2013) 

MWCNTs - 10–50 mg/L ✓ - Zhai et al. (2015) 

Palm MWCNTs 110‒170 0.05 mg/L ✓ ✓ Taha et al. (2016) 

Pumpkin Fluorescent carbon dots 4 100‒400 mg/L - ✓ Qian et al. (2018) 

Rapeseed 

 

Graphene oxide - 25‒50 mg/L ✓ - Cheng et al. (2016) 

Fullerol - 1‒100 mg/L ✓ ✓ Xiong et al. (2018) 

MWCNTs 10‒150 10-100 mg/L No No Larue et al. (2012) 

MWCNTs 100 10‒50 mg/L ✓ ✗ Oloumi et al. (2018) 

Soybean 

 

MWCNTs 15‒40 25‒200 mg/L ✓ ✓ Lahiani et al. (2013) 

MWCNTs - 50 µg/mL ✓ ✗/✓ Lahiani et al. (2017) 

MWCNTs - 10–50 mg/L ✗ - Zhai et al. (2015) 

Squash 
MWCNTs 13–16 1,000 mg/L ✗ - Stampoulis et al. (2009) 

MWCNTs 5‒15 125‒1,000 µg/mL ✗ ✗ Hatami (2017) 

Squash Carbon60 fullerenes - ~1.7 g/kg soil ✗/✓ - Kelsey and White (2013) 

Sunflower MWCNTs  10‒50 mg/L ✓ ✗ Oloumi et al. (2018) 

Tobacco 
Carbon nanoparticles - 25‒25 mg/pot ✓ ✓ Liang et al. (2013) 

Carboxyfullerence 100‒200 10‒144 mg/L ✗ ✗ Liu et al. (2013) 
 

1 Multi-wall carbon nanotubes.   
2 Single-wall carbon nanotubes. 

*✓: positive effect     ✗: negative effect     ✗/✓: both positive and negative effect     No: no effect 

** Adapted from Verma et al. (2019).   
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application of these compounds (Iavicoli et al., 2017). More specifically, 

nanoparticles could be absorbed at different rates, depending on their types, 
into human (and animal) bodies through inhalation, ingestion, and skin contact. 

They could mainly interact with cells through adhesion, endocytosis, semi-

endocytosis, and penetration. The greater surface area of nanoparticles elicits a 
higher toxic dose response than similar concentrations of their bulk 

counterparts. For instance, exposure to leaked titanium dioxide nanoparticles 

in animals and humans induces tissue degradation and organ injury mainly 
through oxidative stress, apoptosis, and necrosis. Excessive inflammation 

because of the high amount of biomolecules oxidized by nanoparticles and 

ROS may further induce aging, cancer, and other diseases (Ranjan et al., 2019).  
The concentration of nanoparticles could play a significant role in their 

toxicity level. In a study, the toxicity of different concentrations of iron oxide 

nanoparticles on an animal model (i.e., zebrafish) was visualized by using a 
fluorescent dye (Congo red) conjugated with the nanoparticles. As shown in 

Figure 10, magnetic nanoparticles (i.e., Congo red@iron(II, III) oxide (Fe3O4) 

conjugates) exerted more toxicity on zebrafish larvae by increasing their 

concentration and resulting in the delay in hatching cycles at the concentration 

of 100 µg/m and mortality at concentrations exceeding 200 µg/mL (Jurewicz 

et al., 2020).  
The level of nanoparticle toxicity may depend on the existence and type of 

surface coatings (i.e., ligands). Zheng et al. (2018) used the transcriptome 

sequencing technique and PCR to study the impact of magnetic nanoparticles 
(Fe3O4) coatings on adult zebrafish (Danio rerio). Compared to the naked 

nanoparticles, the fish exposure (7 d) to the starch-coated ones inflicted lower 

gill toxicity but more significant liver damage. This was due to higher 
bioaccumulation of positively charged naked Fe3O4 nanoparticles in gill cells 

with negatively charged surfaces. In contrast, starch-coated Fe3O4 

nanoparticles had smaller sizes and showed a steric hindrance, preventing their 
attachment on collector surfaces in fish body. However, the very same property 

made the coated magnetic nanoparticles more transportable, leading to their 

higher accumulation in the liver. Figure 11 illustrates the differentially 
expressed gene profiles in the gill and liver tissues of fish exposed to magnetic 

nanoparticles.  

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 10. Different intervals of Congo red@
 
Fe3O4

 
internalization into zebrafish embryos up 

to 96 h (Jurewicz et al., 2020). With Permission from the American Chemical Society. 

Copyright© 2020.
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

Fig. 11. Schematic diagram showing differently expressed gene profiles in the gill and liver tissues of fish exposed to magnetic nanoparticles, i.e., naked and starch-coated Fe3O4 nanoparticles. Data 

from Zheng et al. (2018).  
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Figure 12 shows the effect of uncoated, polyvinylpyrrolidone-coated, or 

citrated-coated silver nanoparticles on macrophages and HT29 epithelial cells. 
Uncoated and coated-Ag nanoparticles triggered oxidative stress and 

inflammatory responses, respectively (Nguyen et al., 2013). Accordingly, 

coated-silver nanoparticles resulted in cell enlargement and elongation, 
whereas uncoated ones induced cell shrinkage (Fig. 12). These findings implied 

that the absence of coating could be more toxic. However, the exact level of 

toxicity of any nanoparticles would significantly depend on their size and the 
nature of the coated ligand used and hence, should be investigated case by case. 

For instance, the application of toxic ligands (e.g., cetyltrimethylammonium 

bromide, poly(diallyldimethylammonium) chloride, bionic, and oleate) in 
nanoparticle functionalization may render more toxicity effects compared to 

naked nanoparticles (Bozich et al., 2014). On the contrary, citrate-coated 

nanoparticles induced lower cytotoxicity than polyvinylpyrrolidone-coated 
ones (Nguyen et al., 2013). This could be attributed to their difference in the 

extent they prevent silver nanoparticles from leaching. 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

In addition to bioavailability, coatings, through their surface charge, 

could also influence the cytotoxicity of nanoparticles. In fact, the surface 
charge of the coating is more significant in terms of cytotoxicity, whereas 

its composition is a significant factor from the ROS generation point of 

view. In this context, cadmium selenide/zinc sulfide core/shell 
nanoparticles with positively charged coatings (e.g., polyethylenimine or 

cysteamine) were absorbed more by cells (i.e., HaCaT keratinocytes) 

compared to their counterparts with negatively charged coatings (e.g., 
dihydrolipoic acid or glutathione) (Zheng et al., 2017). 

The shape of nanoparticles is another determinant of their toxicity. For 

example, fiber-like nanoparticles show poor miscibility in application 
media and, hence, could release into the air. Following their release, these 

nanoparticles could be inhaled and cause blood contamination by directly 

entering the bloodstream from the lungs, ultimately reaching all other body 
organs. Another contributing factor to the health impacts of nanoparticles 

is their size. More specifically, the nano-sized dimension of  these particles 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 Fig. 12. Confocal micrographs (A) and TEM micrographs (B) of J774A.1 cells exposed to coated and uncoated silver nanoparticles for 24 h. Structures stained in pink and blue are for F-actin and 

nucleus, respectively. Arrows show the existence of intracellular silver nanoparticles, and “m” stands for mitochondrion (Nguyen et al., 2013). 
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allows them to reach various susceptible body parts, for example, the brain, via 

crossing the blood-brain barrier, a physical barrier their bulk-size counterpart 
cannot cross (Dehhaghi et al., 2019). Once inside the brain, nanoparticles could 

induce various neurodegeneration diseases, including Alzheimer’s disease, 

amyotrophic lateral sclerosis, Huntington’s disease, multiple sclerosis, and 
Parkinson’s disease, potentially through rendering apoptosis, 

neuroinflammation, and neuronal cell loss (Dehhaghi et al., 2019). Therefore, 

it is crucial to carefully consider and engineer various aspects of nanoparticles 
before applying them in agriculture to ensure health and safety standards. 

 

2.1.2. Nanopesticides 
 

Conventional pesticides contain coarse particles and show less than 30% 

annihilation efficiencies against targeted pest species (Hayles et al., 2017; Rani 
et al., 2023) due to low biological activity, dispersibility, and stability (Zhang, 

2018; Manzoor et al., 2023). These pesticides also have many side effects on 

the surrounding ecosystem and human health (Fig. 13). 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

The detrimental effects of conventional pesticides are generally persistent 
for a long time or could even be irreversible (Kah and Hofmann, 2014; Hennig 

et al., 2023). Therefore, novel plant protection methods against pests must be 

developed, among which nanopesticides are considered promising alternatives. 
Nanopesticides show higher mobility, solubility, dispersibility, durability, and 

leaf adhesion (Kah et al., 2013). Controlled release and favorable biocidal 

activities (even at low concentrations) are the other features of these 

compounds (Sun et al., 2019; Mubeen et al., 2023). Nanopesticides are 

categorized into (i) pesticides whose effective ingredients are nano-sized, 
usually in the form of a powder, nanodispersant, or microemulsion (Jiang 

et al., 2012), and (ii) those effective ingredients are in interaction with 

nanomaterials through encapsulation, entrapment, adsorption, and binding 
(Fig. 14) (Kumar et al., 2019). The designation aims of the second group of 

nanopesticides are to improve the performance of a conventional pesticide, 

reduce its release into the environment, and minimize the exposure of non-
targeted species (Jindal et al., 2017; Pan et al., 2023). Through this strategy, 

nanoparticles can protect pesticide agents against degradation, leaching, 

photolysis, and volatilization while improving the delivery and 
bioavailability of water-insoluble active ingredients (Sun et al., 2019; Paz-

Trejo et al., 2023). 

Despite the mentioned advantages of nanopesticides, concerns with 
respect to their biosafety and long-term ecological and health effects, 

especially on the labor exposed to these compounds, have emerged (Iavicoli 

et  al.,  2017). For   example,   nanopesticides   can  be   evaporated   before 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

reaching the targeted-leaf surface when sprayed in tiny droplets (Kumar et 
al., 2019). Notably, most emulsifiable concentrates and microemulsions 

used in nanopesticides are polar solvents (e.g., alcohols, benzenes, and 

ketones), some of which have high acute toxicity and easily find their way 
into animal and human bodies through contaminated farmlands and 

groundwater. Polar solvents are persistent and accumulate in the 

environment ,    which    could     widely     cause     acute    poisoning and 

Fig. 13. Relocation and adverse side effects of conventional pesticides on the ecosystem, i.e., (1) air, (2) land, and (3) water. Adapted from Liu et al. (2019). 
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Fig. 14. Schematic presentation of different nanoformulations (synthesized through interactions 

between active ingredients and nanoparticles) and the release of active materials from them. 

Adapted and redrawn from Kumar et al. (2019). 
 
 

 

even death of animals (Sun et al., 2019). 
Finally, the potential, extent, and environmental effects of the combined 

toxicity of nanopesticides and nanofertilizers are still poorly studied. Therefore, 

the fate of these compounds must be extensively studied before their 
commercial applications. Figure 15 illustrates the life-cycle assessment of 

nano-enabled products in agriculture (Iavicoli et al., 2017). 

 
2.2. Microalgae oil 

 

Microalgae with high lipid contents can be used as feedstock for third-
generation biodiesel production. These organisms could deliver a high 

photosynthesis rate and growth rate (Nan et al., 2023; Sathya et al., 2023) even 

if cultivated on unproductive land using wastewater and saline water (Satpati 
et al., 2023; Vasistha et al., 2023). Microalgae do not require pesticides or 

herbicides (Chiaramonti et al., 2017) while tolerating high carbon dioxide, 

nitrogen oxides, sulfur oxides, and particulate matter concentrations (Imhoff et 
al., 2011). Regarding fuel properties (e.g., heating value, density, viscosity, and 

acid value), algal biodiesel is comparable to petrodiesel (Kings et al., 2017). 

Considering the advantages, algal oil could be regarded as a sustainable 
feedstock for biodiesel production if the two major elements jeopardizing its 

commercial feasibility (i.e., microalgal biomass cultivation and harvesting) are 

further improved. 
 

2.2.1. Microalgae biomass cultivation 

 
Direct use (as a micronutrient supplement) or indirect use (as a light 

scattering and absorption improver and antimicrobial agent) of nanoparticles 

can improve algae growth rate by improving growth-related physiological 
processes. Figure 16 summarizes the performance of nanoparticles as 

micronutrient supplements for enhancing microalgae growth and lipid 

accumulation. Low nanoparticle doses (i.e., <100 mg/L) typically produce 
higher performance efficiencies during microalgae cultivation. Regarding 

performance time, the lower nanoparticle doses could improve lipid 

productivity, lipid percentage, and biomass yield. Unlike these performance 

indicators, higher nanoparticle doses could enhance the growth rate factor (i.e., 

200‒300 mg/L). Moreover, the larger nanoparticle size within the investigated 

range could significantly affect the performance indicators: lipid percentage 

and biomass yield. 

Concerning their direct use, nanomaterials can enhance cell size and 

lipid accumulation in microalgae by exerting oxidative stress and 
stimulating rapid nutrient uptake (Kang et al., 2014). This approach allows 

ZVI nanoparticles to be used as micronutrient supplements to improve 

photosynthesis rate, growth rate, and lipid production and accumulation 
while reducing the requirements for organic carbon sources (Sarma et al., 

2014). These effects may be attributed to the provision of a suitable source 

of iron (i.e., ZVI nanoparticle oxidation to iron2+) (Pádrová et al., 2015). In 
a study, the growth and physiology of three key coastal marine microalgae 

(Isochrysis galbana, Pavlova lutheri, and Tetraselmis suecica) were not 

negatively affected in the medium containing ZVI nanoparticles. Unlike the 
control, abundant, fully formed (perfectly spherical) large storage lipid 

bodies were identified within microalgal cells using cellular 

micromorphological analysis by transmission electron microscopy (Kadar 
et al., 2012). Both the diameter and number of oil droplets were increased 

in I. galbana in the presence of ZVI nanoparticles. Despite being healthy, 

all the mentioned microalgae developed a mesh of gel-like substances 

around their plasma membrane (Kadar et al., 2012). As ZVI nanoparticle is 

more bioavailable, significantly lower amounts were required to support 

algal growth than Fe-chelated ethylenediaminetetraacetic acid (the bulk 
analog). The higher bioavailability of ZVI nanoparticles could be attributed 

to their ability to be internalized by endocytosis and their facilitated 

penetration into the cytosol through higher interaction with the microalgae 
cell surface (Ševců et al., 2011). In another study, lipid accumulation was 

strongly enhanced in two eustigmatophycean algae (Trachydiscus minutus, 

Nannochloropsis limnetica) and four green algae (Raphidocelis 
subcapitata, Parachlorella kessleri, Dunaliella salina, Desmodesmus 

subspicatus) following the addition of 5.1 mg/L ZVI nanoparticle in 

Zehnder culture medium. ZVI nanoparticles could also increase the 
proportion of polyunsaturated fatty acids in the resultant algal lipid 

(Pádrová et al., 2015). This feature could be regarded as favorable in cold 

climates by enhancing the cold flow properties of the prospective biodiesel, 
while it could be considered unfavorable in hot climates by adversely 

influencing biodiesel’s oxidative stability (Talebi et al., 2013). 

Nanoparticles with bactericidal activities could be exploited as 
micronutrient elements while preventing the overgrowth of contaminating 

bacteria, a significant concern during commercial cultivation of 

mixotrophic microalgae. On this basis, magnesium aminoclay 
nanoparticles (concentration, 0.01–0.1 g/L) were successfully applied in 

Chlorella sp. KR-1 to suppress the growth of contaminating bacteria (Kim 

et al., 2016). Interestingly, lipid production was also improved by 25% 
compared to the control, reaching ~410 mg fatty acid methyl ester /L/d 

(Kim et al., 2016). 

Regarding their indirect use, nanoparticles can enhance photosynthetic 
activity (i.e., by inducing the higher formation of carotenoid and 

chlorophyll pigment) (Eroglu et al., 2013) and overactivate key metabolic 

enzymes (e.g., nitrate reductase, glutamate-pyruvate transaminase, 
glutamate dehydrogenase, and glutamine synthase) (Mishra et al., 2014). 

Limited light penetration in high-density cultures is a major constraint of 

commercial microalgae cultivation. Nanoparticles can provide effective 

ways to mitigate the adverse effect of uneven light distribution on 

microalgae growth, especially in photobioreactors that require a longer light 
path length (Wang et al., 2022; Xiao et al., 2022). Using this capability, 

light penetrability into microalgae suspension can be facilitated by doping 

nanoparticles within planar waveguide modules that uniformly dilute and 
redistribute the intense incident light (Sun et al., 2018). Some advantages 

of planar waveguide modules doped with nanoparticles include low cost, 

long lifespan, high luminance uniformity, and flexibility for cutting into 
any size with no need for secondary processing. Sun et al. (2016) exploited 

nanoscale organosilicon-particle-embedded planar waveguide modules to 

cultivate microalgae Nannochloropsis oculate in a lab-scale open raceway 
pond. Compared to the bare open raceway pond, remarkable enhancements 

in both biomass and lipid yields were achieved because of a significant 

increase in light distribution within the microalgal culture. Upon 
encountering the nanoscale organosilicone particles, organosilicon-

particle-embedded planar waveguide modules scatter the incident light 

irradiated into the planar waveguide from its edge and transmit it forward 
within it (Fig. 17).  

In another study, the light scattering effect of silica nanoparticles led to 

a uniform distribution of light within a  reactor  during  the  photosynthetic 

1912

Please cite this article as: Hosseinzadeh-Bandbafha H., Panahi H.K.S., Dehhaghi M., Orooji Y., Shahbeik H., Mahian O., Karimi-Maleh H., Sulaiman A., 

Mei C., Kiehbadroudinezhad M., Nizami A.S., Guillemin G.G., Lam S.S., Peng W., Chen X., Kim K.H., Aghbashlo M., Tabatabaei M. Nanomaterials and 

their role in advancing biodiesel feedstock production: A comprehensive review. Biofuel Research Journal 39 (2023) 1901-1932. DOI: 

10.18331/BRJ2023.10.3.4



Hosseinzadeh-Bandbafha et al. / Biofuel Research Journal 39 (2023) 1901-1932 

 

 
 

  

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

process while promoting the growth rate of microalgal cells (Giannelli and 

Torzillo, 2012). Nanoparticles can also enhance light absorption in microalgal 

culture and subsequently increase both pigment and biomass production 

(Aratboni et al., 2023). For example, blue light absorption in microalgal 

cultures can selectively be improved by applying plasmonic filters made of 
silver nanoparticles with polymer films (Estime et al., 2015). Besides light, 

nanoparticles can increase the absorption rate and efficiency of available 

carbon dioxide, further supporting photosynthesis in microalgae (Li et al., 
2022; Yang et al., 2022a). In this context, both the growth rate and fatty acid 

methyl ester productivity of chemoautotrophic microalgae could be improved 

(Jeon et al., 2017). 
Despite the mentioned favorable properties, the steadily increasing 

application of engineered metal-based nanoparticles in microalgae cultivation 

has caused growing concerns about their fate in  aquatic  environments. When 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 

 
entering aquatic compartments, nanoparticles will be exposed to a highly 

dynamic physical and chemical environment that can modify their 

physicochemical properties (Vale et al., 2016). Such physical, chemical, 
and biological modifications (transformations) are the main processes that 

will define the behavior of nanoparticles in water (Turan et al., 2019). More 

specifically, physical processes include homo/hetero aggregation, 
agglomeration, sedimentation, and deposition (Fig. 18a), whereas chemical 

counterparts encompass photochemical reactions, redox reactions 

(oxidation, sulfidation), and dissolution (Fig. 18b).  
These reactions significantly depend on nanoparticle properties 

(concentration, size, coating material, shape, and oxidation level) and 

environmental conditions (pH, ionic strength, and dissolved organic matter) 

(He et al., 2017). Figure 19 illustrates the adsorption, dissolution, 

transformation,   and   stabilization / aggregation  behaviors   of   magnetic 

Fig. 15. Life-cycle of nano-enabled products used in agriculture. Adapted from Iavicoli et al. (2017). 

 

1913

Please cite this article as: Hosseinzadeh-Bandbafha H., Panahi H.K.S., Dehhaghi M., Orooji Y., Shahbeik H., Mahian O., Karimi-Maleh H., Sulaiman A., 

Mei C., Kiehbadroudinezhad M., Nizami A.S., Guillemin G.G., Lam S.S., Peng W., Chen X., Kim K.H., Aghbashlo M., Tabatabaei M. Nanomaterials and 

their role in advancing biodiesel feedstock production: A comprehensive review. Biofuel Research Journal 39 (2023) 1901-1932. DOI: 

10.18331/BRJ2023.10.3.4



Hosseinzadeh-Bandbafha et al. / Biofuel Research Journal 39 (2023) 1901-1932 

 

 
 

  

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Fig. 16. Contour diagrams indicating the effect of nanoparticle dose and size on the improvement of performance indicators (performance parameters of efficiency and time): (a) growth rate, (b) lipid 

productivity, (c) lipid percentage, and (d) biomass yield during microalgae cultivation. Data obtained from Deng et al. (2017), Estime et al. (2015), Farooq et al. (2016), Guo et al. (2015), He et al. 

(2017), Jeon et al. (2017), Kadar et al. (2012), Kang et al. (2014), Kim et al. (2016), Mykhaylenko and Zolotareva (2017), Ooms et al. (2015), Pádrová et al. (2015), Rudic et al. (2012), Sarma et al. 

(2014), Sun et al. (2016 and 2018), Wang and Yang (2013), and Zhang et al. (2016). 

 

 

                                            

                                         

  

  

1914

Please cite this article as: Hosseinzadeh-Bandbafha H., Panahi H.K.S., Dehhaghi M., Orooji Y., Shahbeik H., Mahian O., Karimi-Maleh H., Sulaiman A., 

Mei C., Kiehbadroudinezhad M., Nizami A.S., Guillemin G.G., Lam S.S., Peng W., Chen X., Kim K.H., Aghbashlo M., Tabatabaei M. Nanomaterials and 

their role in advancing biodiesel feedstock production: A comprehensive review. Biofuel Research Journal 39 (2023) 1901-1932. DOI: 

10.18331/BRJ2023.10.3.4



Hosseinzadeh-Bandbafha et al. / Biofuel Research Journal 39 (2023) 1901-1932 

 

 
 

  

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 
Fig. 17. (a) 3D presentation of one module of the planar waveguide flat-plate photobioreactor, 

(b) 3D presentation of the planar waveguide flat-plate PBR, (c) front view of the module of the 

planar waveguide flat-plate photobioreactor, (d) explosive view of the module of the planar 

waveguide flat-plate photobioreactor, and (e) schematic presentation of light-transfer in the planar 

waveguide doped with light scattering nanoparticles. Adapted and redrawn from Sun et al. (2016). 
 

 
 

nanoparticles in the presence of dissolved organic matter. For example, through 

dissolution (process IV in Fig. 19), the common thin oxide coating on zero-
valent magnetic nanoparticles (copper(II) oxide on copper zero-valent 

magnetic nanoparticles) is removed by natural organic matter through the 

dissolution process. This process allows sufficient oxidation of the exposed 

zero-valent magnetic nanoparticles with oxygen (copper(I) oxide formation) 

(Wang et al., 2016b). 

Organic matter can generally alter the toxicity of magnetic nanoparticles by 
modifying ROS generation, steric hindrance, electrostatic repulsion, 

bioavailability of the dissolved nanoparticles, and suspension stabilization 

(Fig. 20).  
Generally, aggregation/agglomeration increases the size of nanoparticles 

and decreases their concentration in solution, accelerating deposition (Zhang et 

al., 2018). The rate and size of metal nanoparticle aggregation positively 
correlate with their concentrations in suspension. Many environmental factors 

can influence the aggregation process and the stability of metal nanoparticles 

in aquatic systems. For example, natural organic matter attaches to the particle 
surface and increases particle stability, whereas ionic strength not only affects 

the particle surface charge like the pH values do but also alters the electrical 

double layer.  
It should be noted that the existence of natural nanoparticles, colloids and 

their aggregates, and metallic pollutants further complicate the 

physicochemical speciation in the exposure medium and determine different 
biological reactivity. The key chemo- and bio-dynamic processes driving the 

interactions in the mixtures of engineered nanoparticles (ENPs) and metallic 

pollutants with aquatic (micro)organisms are shown in Figure 21 (Li et al., 
2020). 

Exposure to high doses of nanoparticles may reduce biomass and lipid 

production by suppressing microalgae growth through a direct or indirect 
mechanism (Fig. 16). The former is done by the adhesion of nanoparticles onto 

cell membranes, leading to their disruption (Fig. 22) (Chen et al., 2019). In 

comparison, the latter is attributed to the occurrence of nanoparticle 
agglomeration or aggregation (He et al., 2017). These phenomena could reduce 

the available light necessary for algal growth (shading effect or entrapment) 

and limit nutrient uptake by the cells (Deng et al., 2017). ZVI (Lei et al., 2016), 
titanium dioxide (Manzo et al., 2015), and cerium(IV) oxide (Rodea-Palomares 

et al., 2012) nanoparticles have been experimentally shown to inhibit 

microalgae growth by triggering both mentioned mechanisms. It should be 
noted that besides entrapment, nanoparticle agglomeration and aggregation 

could eventually trigger oxidative stress via over-accumulation of intracellular 
ROS (Fig. 22) (Chen et al., 2019). Briefly, ROS generation leads to membrane 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 
Fig. 18. Common physical (a)

 

and chemical (b)

 

transformations that nanoparticles undergo 

in the aquatic environment. Adapted and redrawn from Amde et al. (2017).

 

 

 lipid peroxidation and over-activation of two antioxidative enzymes, i.e., 

superoxide dismutase and peroxidase. Once ROS is accumulated beyond 

the threshold, algal photosynthesis, mitochondrial membrane, and DNA 

will be compromised. Based on “omics” analysis, genes encoding RuBisCo 

of carbon fixation (rbcL), electron transport chain (atpA, psbD, petF, psaB, 

cox3, and nad5), light-harvesting proteins of the photosystem, and the 

reaction center protein of PSII (D1), are suppressed upon exposure to high 

concentrations of nanoparticles. Moreover, nanoparticles can down-

regulate the proteins involved in photosynthesis (cytochrome b6-f 

complex). These interventions eventually reduce the production of 

nicotinamide adenine dinucleotide phosphate
 
and adenosine triphosphate, 

and hence, inhibit the assimilation of carbon dioxide and subsequently 

decrease the rate of sugar synthesis in the Calvin cycle (Chen et al., 2019).
 

The algal toxicity of nanoparticles could be affected by their oxidation 

level. This feature is generally influenced by the age of the nanoparticles 

and the conditions of their surrounding environment. For example, at 

similar particle sizes (20–30 nm), the algal toxicity of iron nanoparticles 

varies proportionally to their oxidation level; ZVI>Fe3O4>iron(III) 

oxide>α-iron(III) oxide>γ-iron(III) oxide (Lei et al., 2016). From the size 

perspective, the algal toxicity of nanoparticles generally decreases by 

increasing particle size (Raghupathi et al., 2011) since the reactivity of 

nanoparticles for agglomeration  and co-precipitation  with  microalgal cells 
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decreases with increasing their size (Lei et al., 2016) (see Fig. 16 for the 

relationship between nanoparticle size and performance indices). This issue 
was experimentally shown by Zhang et al. (2016), who reported that zinc oxide 

nanoparticles were more toxic on Skeletonema costatum than their bulk 

counterparts. It was observed that the algicidal activity of the zinc oxide 
nanoparticles was linearly correlated with their intracellular accumulation.  

Another mechanism through which some metallic nanoparticles (silver and 

copper(II) oxide) could cause toxicity is the dissolution of bioavailable metal 
ions. To investigate that, Angel et al. (2013) experimentally tested the impacts 

of different coatings on the dissolution rate of silver nanoparticles. It was found 

that polyvinylpyrrolidone-coated silver nanoparticles had a lower dissolution 
rate and, subsequently, a lower toxicity effect than their citrate-coated 

counterparts. Besides the coating materials, the rate of nanoparticle dissolution 

depends  on water  organic  matter. For  example, organic  chlorine  compounds 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

induced silver nanoparticle dissolution. On the contrary, the dissolution rate 

of silver nanoparticles decreased with increasing the nanoparticle size, i.e., 
micron-sized silver nanoparticles had a slower dissolution rate than their 

nano-sized counterparts (Angel et al., 2013).  

Since most nanoparticles used in microalgae cultivation may ultimately 
enter the natural aquatic environments, studying their effects on 

microorganisms is of crucial importance. In natural ecosystems, most 

microorganisms exist in multi-species aggregates (Nozhevnikova et al., 
2015). These microbial aggregates comprise a substratum (abiotic and/or 

biotic) for the attachment of complex consortia of microbial cells (archaea, 

bacteria, microalgae, protozoa, and fungi) that are embedded in a 
mucilaginous matrix composed of extracellular polymeric substances 

(Tang et al., 2018). Figure 23 outlines the exposure routes of aggregated 

microorganisms to nanoparticles in an aquatic environment.  

Fig. 19. The effects of natural organic matter on the adsorption (processes I-III), dissolution (process IV), transformation (processes V-VI), and stabilization/aggregation (processes VII-IX) behaviors 

of magnetic nanoparticles in aquatic systems. Adapted from Wang et al. (2016b). 
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To some extent, the microbial community could adapt itself to nanoparticle 

exposure. Unlike the planktonic state, higher resistance against nanoparticles is 
shown by microbial aggregates. This could be obtained through two main 

mechanisms, including (i) community adaptation and (ii) aggregated structure. 

Figure 24 illustrates the key protection mechanisms against nanoparticle 
exposure in microbial aggregates. A detailed study of these resistance 

mechanisms is crucial for engineering fewer toxic nanoparticles for beneficial 

microorganisms (Tang et al., 2018). 

 

 
2.2.2. Microalgae biomass harvesting 

 

Microalgae harvesting is one of the main challenges associated with their 
application as biodiesel feedstock (Lee et al., 2015b). Centrifugation, scraping, 

flotation, filtration, and flocculation-coagulation are the main technologies 

commonly used for harvesting microalgae (Hu et al., 2013). However, the 
existing technologies generally have low economic feasibility for microalgae 

biomass separation (Kumar et al., 2022b; Lapeñas et al., 2022). This issue is 

attributed to the low concentrations (typically <1.5 g/L) and small size (∼10 

μm) of microalgae cells, stabilizing their suspension in a culture medium 

(Fraga-García et al., 2018). The mentioned constraint could be efficiently 
overcome using nanoparticles or their composites as flocculating agents. 

Nanoparticle application could replace the need for hazardous chemicals in the 

microalgae harvesting process (Ge et al., 2015c; Patel et al., 2022). Figure 25 

shows the effect of microalgae dose, nanoparticle dose, and nanoparticle size 

on the performance parameters in the harvesting process. The higher 

performance parameters (i.e., efficiency and time) in the harvesting process are 
obtained at microalgae  dose, nanoparticle  dose, and  nanoparticle  size  in  the 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

range of 500‒870 mg/L, 7‒1250 mg/L, and 11‒85 nm, respectively. In 

general, the lower dose of microalgae and nanoparticles in this process with 
smaller nanoparticle sizes results in higher performance efficiencies. 

Nanoparticles with smaller sizes are more likely to pass through the cell 

walls and interact with cytomembrane and organelles (Bhuvaneshwari et 
al., 2018; Rana and Prajapati, 2023). In comparison, larger sizes or 

aggregates of nanoparticles that fail to get through the cell wall can 

accumulate on the cell surface (Khan et al., 2022; Yang et al., 2022b). 

Higher doses of nanoparticles also cause charge neutralization, decreasing 

the flocculation efficiency (Dharani and Balasubramanian, 2016). 
The technique involves the interaction between magnetic nanoparticles 

and microalgae cells, followed by applying an external magnetic field to 

separate the nanoparticle-microalgae complex. The efficiency of this 
technique significantly depends on microalgae species, 

incubation/cultivation age, nanoparticle concentration, culture medium pH, 

temperature, and both microalgae cell and magnetic nanoparticle surface 
characteristics (Wang et al., 2015). At the peak value of the microalgae 

growth phase, the efficiency of magnetic separation is maximum because 

of higher collisions between magnetic nanoparticles and cells (Hu et al., 
2013). Compared to fresh cultures, older cultures have lower surface 

functional groups. This improves the availability of a given concentration 

of magnetic nanoparticles to absorb more cells in old cultures and enhance 
harvest efficiency (Zhang et al., 2012). However, there is an age threshold 

after which the efficiency declines. More specifically, following the 

biomass peak point, microalgae cells undergo autolysis, releasing organic 
matter, and reducing the availability of magnetic nanoparticles for 

microalgae cells (Wang et al., 2015). Compared to colonial microalgae, 

unicellular microalgae have larger specific  surface  areas because  of  their 

Fig. 20. Different mechanisms for mediating the toxicity of magnetic nanoparticles by natural organic matter in aquatic environments. NOM: Natural organic matter. Adapted from Wang et al. (2016b).
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Fig. 21. The key chemo-
 
and bio-dynamic processes driving the interactions in the mixtures of metal-containing ENPs and metallic pollutants with aquatic (micro)organisms. These particles are 

generally diffused in the medium at different rates and reach the (micro)organism surface (1). ENPs might also aggregate (2)
 
or sorb metal pollutants (3). The metal fraction of the ENPs might also 

release through the dissolution process (4). Once at the organisms’ surface, the adsorption of these particles on the cell wall/membrane occurs (5). Following adherence to the cell wall/membrane, the 

particles can penetrate the cells (6)
 
through endocytosis in the case of “particle-ingestive” organisms, alteration in cell membrane permeability in the case of “particle-proof” organisms, or other 

possible mechanisms. It should be noted that the transportation of dissolved metallic pollutants could be carried out through active (e.g., via essential trace metal transporters) or facilitated (e.g., via 

channel-mediated diffusion) transportation. Following the transportation into the cells, ENPs, and metallic pollutants interact with intracellular structures and biomolecules, such as DNA, lipids, and 

proteins, affecting vital cellular processes (7). ENPs or metallic contaminants could also be transformed (8)
 
via different methods, such as intracellular complexation, dissolution of engineered 

nanoparticles, sulfidation, or excreted (9). Adapted from Li et al. (2020). 

Fig. 22. Schematic representation of the mechanisms of nanoparticles toxicity to microalgae cell membrane and organelles. Adapted and redrawn from Chen et al. (2019). 
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Fig. 23. The fates of nanoparticles within the water column and the sediments in an aquatic 

ecosystem. Microbial aggregates in aquatic ecosystems can be divided based on the attachment 

surface into biofouling biofilm, episammon, epipelon, metaphyton, epilithon, epiphyton, epizoic, 

and neuston. Adapted from Tang et al. (2018). 
 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

smaller cell size and, hence, require a lower concentration of magnetic 

nanoparticles (Xu et al., 2011). The surface charge of most microalgae cells 
is negative at a wide range of pH values (Hu et al., 2013). For example, 

Chlorella spp. contains abundant hydroxyl and carboxyl groups on their 

surfaces (Toh et al., 2014b). Therefore, nanoparticles with positively 
charged surfaces must be used to create an electrostatic attraction and 

flocculate negatively charged microalgae.  

Concerning metal oxides, the pH of the culture medium is another 
significant parameter influencing their harvest efficiency. This is because 

the pH of the medium can change the nanoparticles’ surface charge by 

mediating the loss or gain of protons. More specifically, the charge of 
hydroxyl groups on the surface of metal oxides turns negative and positive 

at pH above and below the isoelectric point, respectively (Lee et al., 2014a). 

Hence, metal oxides such as Fe3O4 (isoelectric point of 6.8) perform best in 
an acidic pH range of 4‒6 (Hu et al., 2013) while offering negligible 

magnetic separation efficiencies (∼10%) under neutral pH, i.e., 7 due to 

their negatively charged surfaces (Toh et al., 2014a). The presence of some 

ions in the culture medium may also affect magnetic separation efficiency. 

Ions such as magnesium2+ and calcium2+ improve the flocculation 
efficiency (Sukenik and Shelef, 1984), whereas some ions, such as 

phosphate ions (monopotassium phosphate salt), can decrease the 

efficiency by changing magnetic nanoparticle surface charge from positive 
to negative (Prochazkova et al., 2013). In addition, the recovery of 

microalgae biomass is reduced by reducing the temperature of the culture 

medium. This reduction could be attributed to lower magnetic nanoparticle 

distribution and mobility at lower temperatures (i.e., higher medium 

viscosity) (Nassar, 2010). 
 

Nanoparticles used for the magnetic separation of microalgae could be 

categorized into naked and surface-functionalized magnetic nanoparticles. 

In fact, naked magnetic nanoparticles could be engineered into 
functionalized ones to achieve higher harvesting efficiencies. For this 

purpose, surface coatings and other modifications with materials such as 

positively charged polymers or cationic surfactants with positively charged 

functional groups are utilized (Zheng et al., 2016). For instance, a cationic 

surfactant, e.g., cetylpyridinium bromide, cetylpyridinium chloride, or 

cetrimonium bromide, can be used for the decoration of Fe3O4 nanoparticles 
 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
Fig. 24. The main protection mechanisms by microbial aggregates following their exposure to nanoparticles. Adapted from Tang et al. (2018). 
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Fig. 25. Effect of microalgae dose, nanoparticle dose, and nanoparticle size on harvesting 

performance parameters, (a) efficiency and (b) time. Data obtained from Dineshkumar et al. 

(2017), Egesa et al. (2018), Farid et al. (2013), Fraga-García et al. (2018), Fu et al. (2021), Ge et 

al. (2015a and b), Hena et al. (2016), Hu et al. (2013 and 2014a and b), Huang and Kim (2016), 

Kim et al. (2018), Lee et al. (2013a and 2015), Lee et al. (2013b and 2014b), Lin et al. (2015), 

Liu et al.(2016b), Liu et al. (2020), Seo et al. (2014 and 2016), Toh et al. (2014 a and b), Tork et 

al. (2017), Wang et al. (2014a and b), Wang et al. (2016a), Xu et al. (2011), Yang et al. (2018), 
and Zhu et al. (2019). 
 
 

(Seo et al., 2016). The resulting positively charged functionalized Fe3O4 

nanoparticles can easily adhere to negatively charged microalgae through 
electrostatic attraction and flocculate the algal cells (Seo et al., 2016). Besides 

simple microalgae separation, the cationic surfactant moiety can also facilitate 

lipid extraction by solubilizing microalgae cell membranes  (Udayan et al., 
2022). The nanoparticles are detached from harvested microalgae by inducing 

repulsion electrostatic force between them by adding sodium dodecyl sulfide 

(anionic surfactant). Finally, the nanoparticles are magnetically collected and 
reused (Seo et al., 2016) (Fig. 26). 

Cationic polyelectrolyte (poly diallyldimethylammonium chloride) (Lim et 

al., 2012) and cationic polymer (polyethylenimine) (Hu et al., 2014a) were 
coated on Fe3O4 to improve the electrostatic interaction between the 

nanoparticle and microalgae biomass. The corresponding efficiencies of ∼99% 

and 97% were achieved for the magnetic separation of Chlorella sp. and 

Corymbia ellipsoidea in the presence of the Fe3O4 nanoparticles, respectively 

(Lim et al., 2012). Fe3O4 nanoparticles coated with cationic polyacrylamide 
have also been applied for magnetic separation of C. ellipsoidea and 

Botryococcus braunii  (Fig. 27) (Wang et al., 2014a). At  pH 7, the  adsorption 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 26. Schematic representation of the steps involved in a typical harvesting process of 

microalgae by magnetic nanoparticles. Adapted and redrawn from Seo et al. (2016). 
 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 
Fig. 27. Light microscope photos of free Fe3O4 nanoparticles (A), free microalgal cells (B, 

C), naked Fe3O4 -cell aggregates following magnetic concentration (D, G), CPAM-Fe3O4-

cell aggregates prior to magnetic concentration (E, H), and CPAM-Fe3O4-cell aggregates 

after magnetic concentration (F, I). (A) ×400; (B, D, E, and F) B. braunii (×400); (C, G, and 

I) C. ellipsoidea (×1000); (H) C. ellipsoidea (×400). Enhanced from Wang et al. (2014a). 

With Permission from the American Chemical Society. Copyright© 2014. 
 

 

capacities, determined by electrostatic attraction, were 21.4 and 114.8 mg 
dry biomass/mg nanoparticle for C. ellipsoidea and B. braunii, respectively.  

(3-aminopropyl)triethoxysilane-coated barium hexaferrite nanoparticles 

could deliver a harvesting efficiency of 98.6–99.5% at pH 7 through the 
magnetic separation of oleaginous Chlorella sp. (Seo et al., 2014). Due to 

their larger surface-to-volume ratios, a stronger electrostatic binding was 

observed with the smaller-sized functionalized nanoparticles. However, 
detaching efficiency could be improved by 72.5% to 85% by increasing the 
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(3-aminopropyl)triethoxysilane-coated nanoparticles size by ~10.8 times (from 

108 nm to 1.17 µm) (Seo et al., 2014). Oleaginous Chlorella sp. HQ was 
magnetically separated by sponge-like nanocomposites (graphene-

Fe3O4/polydiallyldimethylammonium chloride), synthesized using Fe3O4, 

graphene oxide, and cationic polymer diallyldimethylammonium chloride (Liu 
et al., 2016b). The harvesting performance of the nanocomposites was 

compared to those of naked Fe3O4 and graphene-functionalized Fe3O4. A 

higher harvesting efficiency was achieved by graphene-Fe3O4 over Fe3O4 
(62.7% vs. 80.1%) owing to the beneficial contributions (high surface area, 

lightweight, stable dispersion) of graphene sheets. Incorporating the polymer 

(graphene-Fe3O4 /polydiallyldimethylammonium chloride) further improved 
the harvesting efficiency of graphene-Fe3O4 by 8.6% (Liu et al., 2016b). 

Moreover, the nanocomposites graphene-

Fe3O4/polydiallyldimethylammonium chloride showed a wider pH activity 
range due to the presence of graphene oxide. These advantages could be 

attributed to the strong interactions (electrostatic attraction and hydrogen 

bonds) between the graphene sheets and the polymer 

diallyldimethylammonium chloride through their active sites. The presence of 

the polymer could improve microalgae flocculation through adsorption 

bridging and electrostatic interactions of its nitrogen+ groups with the 
negatively charged microalgae cells.  

Magnetic separation is popular because of its economic feasibility and ease 

of application (Wang et al., 2014b). With the same energy input, greater 
amounts of biomass and total extracted lipid contents could be obtained when 

conventional harvesting techniques are replaced by magnetic separation using 

magnetic nanoparticles, especially using those with cell-disruption capabilities 
(Seo et al., 2016). The environmental feasibility of the separation process can 

also be improved by implementing this technique owing to the possibility of 

recycling both magnetic nanoparticles and the spent culture medium after 
harvest (Lee et al., 2013a). These advantages reduce energy consumption, 

water usage, and nanoparticles’ negative effects on the environment. Compared 

to naked magnetic nanoparticles, their functionalized counterparts provide 
higher separation efficiencies while delivering more rapid processes, lower 

energy consumption, and wider pH activity ranges (Hu et al., 2014a). 

Despite the advantages of magnetic separation, some technical and 
environmental constraints also exist. One of the main technical issues is the 

inefficient postharvest separation of magnetic nanoparticles from microalgae 

biomass under certain circumstances. This issue could significantly affect the 
environmental and economic feasibilities of the entire process by increasing 

energy consumption and reducing nanoparticle recycling and the purity of 

harvested microalgae biomass (Lee et al., 2015a). The technical issue of 
postharvest separation of magnetic nanoparticles could be, to some extent, 

overcome by increasing nanoparticle size at the expense of the amount required 

(Seo et al., 2014). The environmental risks of nanoparticles application 
(including magnetic ones) were explained earlier. 

Magnetic nanoparticles can generate microbial toxicity via membrane 

depolarization and disruption of cell integrity. This is caused by the 
electrostatic interaction between the negatively charged bacterial membrane 

and the positively charged cationic polymer or free metal ions (Arias et al., 

2018). Alternatively, magnetic nanoparticles can pass through cell membranes 

via passive diffusion, receptor-mediated endocytosis, clathrin-mediated 

endocytosis, and caveolin-mediated endocytosis (Patil et al., 2018). Upon 
entering the microbial cell, magnetic nanoparticles are enzymatically broken 

into iron2+ ions (Patil et al., 2018), triggering lipid peroxidation, DNA damage, 

protein (gene expression), and organelle dysfunctions (actin polymerization, 
mitochondria) (Arias et al., 2018). Before entering the cells, hydrogen peroxide 

and other ROS could also be generated on the surface of magnetic nanoparticles 

through photocatalytic reaction under ultraviolet and visible lights (Xing et al., 
2019). The transportation of these oxidative nanoparticles into microbial cells 

can intensify the mentioned cellular damage. 

 
2.3. Animal fat 

 

Meat production wastes increase with population growth and living 
standards because of higher demands for processed food. Animal fat is one of 

the most important fractions of such waste, mainly consumed by the soap and 

candle production industries, animal feed supplements, and lubricants. 
However, because of some health concerns, for example, the transmission risk 

of bovine spongiform encephalopathy by beef tallow, biodiesel production 

from this low-cost feedstock has grown substantially.  

2.3.1. Livestock and poultry  

 
Nanotechnology can improve feed efficiency and nutritional value 

(faster growth rate) while minimizing disease-related losses in livestock 

and poultry production (Chen and Yada, 2011). These advantages 
significantly increase the economic feasibility of animal husbandry, leading 

to higher fat production and availability for biodiesel production under the 

biorefinery concept. Nanoparticle-containing food supplements for animals 
(nanofeed®) enhance animal body defense against pathogens by boosting 

the immunity system or exerting antimicrobial effects (El Sabry et al., 

2018). Additionally, nanoadditives could improve cell activities (as an 
antioxidant) (Hassan et al., 2017), anticancer mechanisms (Jain et al., 

2018), phosphate utilization, and bone growth (Sekhon, 2014) in animals. 

Depending on the aim, different nanoparticles, including dendrimer, 
liposome, polymeric, micellar, ceramic, carbon-based, and metallic 

nanoparticles (silver, copper, cobalt, iron(II) oxide, titanium dioxide), can 

be used in animal husbandry (Table 4).  

Despite the advantages of nanoparticles, some may damage the liver, 

lungs, and brain (as elaborated earlier). This issue necessitates the green 

synthesis and use of nanoparticles from plants (e.g., Aloe vera, Camellia 
sinensis, Azadirachta indica) for future applications. In general, 

nanomaterials, due to their very small size, are absorbed through the 

gastrointestinal tract, internalized into cells, and interact with cellular 
organelles and macromolecules (DNA, ribonucleic acid, protein). The 

mentioned interactions can cause cell mutation or deficient defense 

mechanisms by disturbing the biochemical pathways. The causes of 
genotoxicity induced by nanomaterials are either direct interaction of 

nanomaterials with genetic material (DNA, ribonucleic acid) or indirect 

damage by ROS (Dasgupta and Ranjan, 2018). 
 

2.3.2. Aquaculture 
 
With 40–65% oil content, fish and aquaculture wastes are suitable 

biodiesel feedstocks (Behçet, 2011). In aquaculture, nanotechnology can be 

used for water purification, quality enhancement, safety (waterborne 
pathogens removal), and aquatic feed production (Handy, 2012). For 

example, adding Se nanoparticles (a trace element essential for aquatic 

health) into the diets of crucian carp significantly increased the growth rate 
in terms of the final body weight (Zhou et al., 2009). The improvement is 

attributed to the function of Se as an essential antioxidant activating 

glutathione peroxidase enzyme. This enzyme plays a key role in cell 
viability and survival by preventing the Fenton reaction through scavenging 

hydrogen peroxide and preventing hydroxyl radical formation. The 

presence of other nanoparticles, such as iron nanoparticles, in sturgeon and 
young carp diets could also enhance fish growth rate. Notably, 

nanoparticles could deliver nutrients such as omega fatty acids, lycopene, 

and vitamins to cells (Jha et al., 2011). 
Concerning water quality, the meritorious properties (small size, high 

reactivity, and large surface area) of iron-manganese binary nano-oxides 

reportedly allowed an efficient removal of arsenic(III) and arsenic(V) from 

groundwater before water application in aquaculture (Kong et al., 2013). 

Calcium-alginate-entrapped nanoscale iron is another functionalized 
nanoparticle with efficient arsenic removal capability from water resources 

(Bezbaruah et al., 2014). Lanthanum nanoparticles have been successfully 

used to absorb phosphates from water and prevent algal growth in fishponds 
(Ribi -Zelenovi et al., 2009). For pathogen suppression, fungal infections 

in rainbow trout were effectively prevented using Ag-coated water filters 

(Johari et al., 2016). 
 

3. Concluding remarks and future directions   

 
The role of nanotechnology and nanomaterials in boosting the 

productivity of different biodiesel feedstock generations was critically 

reviewed and discussed. Overall, the following main conclusions can be 
drawn from the published studies. 

 

I. Because vegetable oils are still the main feedstock for biodiesel, 
competition can arise with food production. Using chemical fertilizers 

and pesticides can increase crop yield but pose hazards to humans and 

the environment. Nanotechnology  an  help  tackle  these issues  in  a 
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new way. Fertilizers can be applied in nanoparticle form to deliver 

micro/macronutrients (e.g., zinc and calcium) or improve the functioning 
of fertilizers. Nanopesticides can be distributed efficiently on target 

species because of their small size.  

II. The cultivation and harvesting of microalgae can be improved by 
applying nanotechnology. Harvesting is one of the most important 

challenges associated with algal biodiesel. Magnetic nanomaterials offer 

easy scale-up along with fast and gentle processing and could thus be an 
effective strategy for microalgal harvesting.  

III. Nanotechnology could improve the performance and health status of 

livestock, poultry, and aquaculture systems. These production systems 
meet human nutritional needs and produce many waste oils/fats that could 

be used as biodiesel feedstock. Although nanotechnology could enhance 

crop yield, decrease fertilizer/pesticide loss, and protect the environment 
by replacing conventional fertilizers/pesticides, its potential negative 

effects on soil organisms are poorly understood. In addition, the leaching 

of nanoparticles into water bodies could have detrimental effects on 
human health and aquatic biota by releasing metal ions. Future studies 

should examine the leakage of nanoparticles into water bodies and the 

resulting health issues. 

IV. Despite the encouraging findings reported in the published studies about 

using magnetic nanomaterials in microalgae harvesting, their full 

retention, recovery, and reuse remain challenging. More specifically, 
magnetic   nanoparticles    are    sensitive   to   corrosion   in   an   aquatic  

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

environment because of their high reactivity, reducing their lifespan 

and making their full recovery impractical (Saikia et al., 2019). 
Accordingly, future research should focus on fully recovering 

magnetic nanomaterials in algal biodiesel systems, which is crucial 

from economic and environmental viewpoints.  

V. The performance and health status of livestock, poultry, and 

aquaculture systems could reportedly be improved with the aid of 

nanotechnology. Nevertheless, the potentially toxic effects of some 
nanoparticles on living organisms should be evaluated carefully.  
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Calcium, zinc, and 

silver  
40  ppm  ✓  -  -  -  -  -  -  -  -  ✓  -  -  -  -  Sanchez et al. (2019)  

Citrate-reduced gold 

and biosynthesized 

silver  

-  -  ✓  -  -  -  -  -  -  -  -  -  ✓  -  -  Saware et al. (2015)  

Citrate-stabilized gold  -  -  ✓  -  -  -  -  -  -  -  -  -  ✓  -  -  Deka et al. (2012)  

Copper   

75  mg/kg  -  -  ✓  -  -  -  -  -  -  ✓  -  -  ✓  ✓  Refaie et al. (2015)  

7.5  mg/kg  -  -  -  ✓  -  -  -  -  -  -  -  -  -  ✓  Sawosz et al. (2018)  

Fullerol C60(OH)24  0.1–1  µg/mL  -  -  -  -  ✓  -  -  -  -  -  ✓  -  -  -  Kovač et al. (2018)  

Magnesium oxide  0.7–1.4  mg/mL  -  -  -  -  -  ✓  -  -  -  ✓      Nguyen et al. (2018)  

Selenium  
0.07–0.60  mg/kg  -  -  -  -  -  -  ✓  -  -  -  -  -  -  ✓  Mohapatra et al. (2014)  

4 g/kg  -  -  -  -  -  -  -  ✓  -  -  -  -  ✓  ✓  Xun et al. (2012)  

Silver  

10–40  μg  -  -  -  -  ✓  -  -  -  -  -  ✓  -  -  -  El-Desouky and Ammar (2016)  

90  μg/mL  -  -  -  -  ✓  -  -  -  -  -  ✓  -  -  -  Mousavi and Pourtalebi (2015)  

50  μg/mL  -  -  -  -  -  -  -  -  ✓  -  -  -  -  ✓  Gherbawy et al. (2013)  

Zinc  
60  ppm  -  -  -  -  -  -  -  ✓  -  -  -  ✓   -  Muralisankar et al. (2014)  

20  ppm  -  -  -  -  -  -  ✓  -  -  -  -   ✓  -  Uniyal et al. (2017)  

Zinc oxide  

30  ppm  -  -  -  -  -  -  -  ✓  -  -  -   ✓  -  Ghaffari Chanzanagh et al. (2018)  

30 and 60  mg/kg diet  -  -  -  -  -  -  ✓  -  -  -  -  ✓  -  -  Hassan et al. (2017)  

1.2  g/kg diet  -  -  -  ✓  -  -  -  -  -  -  -  -  ✓  ✓  Wang et al. (2017)  

2–10  μg/mL  -  -  -  -  ✓  -  -  -  -  -  ✓  -  -  -  Hassan et al. (2013)  

 

* Adopted from Adegbeye et al. (2019).  
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