
 

* Corresponding author at: Tel.: +55 41 333613180 
E-mail address: shirleyn@ufpr.br 
 
 
 

Please cite this article as: dos Santos-Durndell V.C.,  Peruzzolo T.M., Ucoski G.M., Ramos L.P., Nakagaki S. Magnetically recyclable nanocatalysts  based on 

magnetite: an environmentally friendly and recyclable catalyst for esterification reactions. Biofuel Research Journal 18 (2018) 806-812.  DOI: 

10.18331/BRJ2018.5.2.4  

 

 

 

 Biofuel Research Journal 18  (2018) 806-812

Original Research Paper 

Magnetically recyclable nanocatalysts based on magnetite: an environmentally friendly and 

recyclable catalyst for esterification reactions  
 

Vannia Cristina dos Santos-Durndell, Tailor Machado Peruzzolo, Geani Maria Ucoski, Luiz Pereira Ramos, Shirley 

Nakagaki* 
 

 

 

HIGHLIGHTS 

 
Fe3O4/SiO2 as an efficient and inexpensive catalyst 

for esterification reaction. 

The structure of the catalytic species Fe3O4
 was 

maintained for
 
four

 
catalytic cycles. 

 

Coating magnetic particles with silica prevented
 

crystal aggregation. 
 



 
The advantage of coating

 
the magnetic 

nanoparticles with silica was experimentally
 

demonstrated. 
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Solid magnetic nanoparticles (magnetite = Mag) composed of Fe3O4 and magnetite coated with silica (Fe3O4/SiO2 = Mag/Si) 

were prepared from inexpensive starting materials. The catalytic activity of the solids was investigated for palmitic acid 

esterification with methanol under solvothermal conditions. Both pure Fe3O4 (Mag) and silica-coated (Mag/Si) nanoparticles 

exhibited high catalytic activities and were easy to recover from the reaction environment using an external magnet. Furthermore, 

the magnetic nanoparticle catalysts were reused without significant loss of catalytic activity and showed high durability in typical 

acid-catalyzed reactions. XRD and SEM analyses were conducted before and after esterification, showing almost identical 

particle distribution in both fresh and reused catalysts.  
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1. Introduction 

 
The class of organic ester compounds has become increasingly important in 

recent decades due to the range of industrial applications for production of 

beverages, foods, pharmaceuticals, perfumes, flavorings, plasticizers, solvents, 
chemical intermediates, and many other products (Ansari et al., 1974; 

Nishikubo et al., 1996; Chapuis et al., 2001; Monteiro et al., 2004; Yadav et al., 

2004; Mansoori et al., 2005; Gallezot, 2007; Lenardão et al., 2007; Serri et al., 
2010; Schwab et al., 2013;Paiva et al., 2015). In addition to that, this class of 

compounds has attracted particular attention because of its relevance as a viable 

alternative for partial or full replacement of petroleum diesel, without the need 
for significant changes in diesel engines (Carmo et al., 2009; Demirbas, 2009; 

Avhad et al., 2016). 

Biodiesel is a mixture of alkyl esters that can be obtained by esterification 
of free fatty acids or by transesterification of vegetable or animal oils and fats 

with short-chain alcohols, catalyzed by homogeneous or heterogeneous, 

enzymes, or hybrid phase catalysts (Zhang et al., 2003; Lois et al., 2007; dos 
Santos et al., 2011; Lee et al., 2014; Santos et al., 2014). 

In comparison with its fossil fuel analog, biodiesel is characterized as 

renewable, non-toxic, easy to store, and more biodegradable, but it is more 

expensive due to its high production cost since the current processes require 

high power and materials consumption (Zhang, 2012). In light of that, there has 

been a strong research activity aimed at finding more efficient alkyl ester 
production processes, thus increasing the competitiveness of biodiesel against 

petroleum diesel (Demirbas, 2009; Tabatabaei et al., 2015; Gumba et al., 2016; 

Knothe, 2017). Much of this research focuses on the development of new 
catalysts for heterogeneous catalytic processes, which can become a viable 

alternative to the current production processes using homogeneous catalysts. 

Although homogeneous processes have high conversion values with the use of 
soluble catalysts that present high catalytic activity and ease of operation, these 

processes can present significant drawbacks such as high corrosion of 

equipment, need for numerous separation and purification processes, and 
inability to recover the catalyst at the end of the process, collectively increasing 

the overall process cost while also making the process environmentally 

unsustainable (Ma et al., 1999; Frondel et al., 2007; Demirbas, 2009; Semwal 
et al., 2011; Chuah et al., 2017).  

Besides the possibility of obtaining products with higher purities in fewer 

steps than in homogeneous processes and the advantage of performing the 
recycling and reuse of catalysts, heterogeneous catalytic processes also offer, 

at least in theory, a greater versatility for adaptation to different process 

conditions and reactive systems. This translates into the development of leaner 
processes in which separation steps such as filtration and centrifugation are 

avoided, making the process more efficient (Ma et al., 1999; Cantrell et al., 

2005; Lois, 2007; Carmo et al., 2009; Yan et al., 2009; dos Santos et al., 2011; 
Gumba et al., 2016; Silva et al., 2017). 

One of the major challenges in the catalysis arena is the development of new 

solids for heterogeneous catalytic processes that meet both efficiency and 
selectivity criteria while allowing recovery, reactivation, and reuse during 

numerous cycles, without mass losses. In this sense, magnetic particles are 

potential solids for catalytic research since their recovery and reuse can be 
easily achieved by the use of magnets as opposed to conventional separation 

methods (Polshettiwar et al., 2011; Lopez et al., 2014). In fact, magnetic 
nanoparticles have been mainly investigated as an easy way to recover/remove 

the solid catalyst from the catalytic reaction. There are many examples of the 

use of magnetite (Fe3O4) as a platform for catalytic species (Polshettiwar et al., 
2011; Rossi et al., 2012; Ucoski et al., 2013). Magnetite was also used as 

adsorbent solid for the removal of fatty acids from organic solutions and 

vegetable oils (Cano et al., 2012). At room temperature, the adsorption of oleic 
acid from ethanol-hexane solutions was investigated using equilibrium batch 

experiments. The results showed that the adsorption was rapid (< 2h) and 

followed a pseudo-second-order model. The magnetic properties of the solid 
were also explored in a recycling adsorption experiment (Cano et al., 2012).  

The magnetic properties of solid magnetite (Fe3O4) are related to its 

chemical and morphological characteristics as well the particle size. It presents 
a cubic crystal system with inverted spinel structure, where the unit cell 

comprises O2- ions coordinated with Fe(II) and Fe(III) ions. The Fe(II) ions are 

coordinated in an octahedral structure while Fe(III) ions are coordinated in both 
octahedral and tetrahedral structures. Since the Fe(III) ions are equally 

coordinated in tetrahedral and octahedral frameworks, there is no magnetic 

moment resulting from the presence of these ions. However, all Fe(II) ions are 

only in octahedral structures, being responsible for saturation 

magnetization, that is, the magnetic behavior of the material, causing it to 

be superparamagnetic (Cornell et al., 2003; Friak et al., 2007; Yang et al., 

2011).  

Unlike the many studies that have used magnetic particles as part of 
catalytic solids in heterogeneous process, there are few reports on the 

catalytic aspects of this family of solids for catalytic processes related to 

biofuel. Regarding magnetic particles only, there are some recent reports 
discussing their application, mainly examining Fe3O4 magnetite as a solid 

platform for the preparation of magnetic solids for use in catalysis processes 

(Guo et al., 2012; Tang et al., 2012; Lopez et al., 2014). The association of 
an enzyme with magnetite has also been reported for catalytic purposes (Xu 

et al., 2004; Lee et al., 2007; Ren et al., 2011; Black et al., 2013; Lopez et 

al., 2014) including lipase and magnetite associations to produce fatty acid 
alkyl esters (Lopez et al., 2014; Andrade et al., 2016). 

In the present work, the use of magnetic particles based on pure magnetic 

iron oxide (Fe3O4 = Mag) and magnetic particles coated with silica 
(Fe3O4/SiO2 = Mag/Si) were investigated as catalysts for heterogeneous 

esterification of palmitic acid by methanol in a solvothermal system at 120 

°C and not as support for any other catalytic species.  

 

2. Materials and Methods 

 
2.1. Catalyst preparation (Mag and Mag/Si) 

 

Solid Fe3O4 nanoparticles (Mag) was prepared by a simple co-
precipitation method using FeCl2 and FeCl3 in alkaline conditions (Philipse 

et al., 1994). The solid magnetite coated with silica was obtained using the 

hydrolytic sol-gel process (Fe3O4/SiO2 = Mag/Si) (Stöber et al., 1968), as 
reported previously by Ucoski et al. (2013), following the modifications 

described by Yi et al. (2006) and Wang et al. (2008). Briefly, the synthesis 

was carried out in five steps. In the first step, mild sonication was used to 
dissolve 11.2 mL of Igepal CO-520 in 20 mL of cyclohexane. The ethanol 

suspension (2 mL) of the previously prepared Mag was added, and the 

mixture was sonicated for 1 h. Then, 28% aqueous ammonia (1.9×10-1 mol) 
and a volume of tetraethyl orthosilicate (TEOS; 2.9×10-2 mol) were added 

dropwise, and the suspension was left undisturbed for 48 h. In the second 

step, the obtained suspension was washed with ethanol (5×52 mL), and 
Mag coated with silica (Mag/Si) was separated from the solution using a 

magnet. In the third step, Mag/Si was treated with 52 mL of ethanol, and 

the suspension was sonicated for several minutes, until all the solid was 
dispersed in the solvent. More ethanol (112 mL) and deionized water (74 

mL) were added, and sonication was continued for 1 h. Subsequently, 28% 

aqueous ammonia (1.7×10-1 mol) was added under vigorous stirring. 
Finally, TEOS (9.6×10-2 mol) was introduced four times at 12 h intervals. 

In the fourth step, Mag/Si was separated from the suspension using a 

magnet and added to a mixture of 28% aqueous ammonia (6.3×10-2 mol) 
and deionized water (20 mL). The suspension was left undisturbed for 12 

h. In the fifth and last step, the isolated Mag/Si was mixed with 3% aqueous 

ammonia (4 mL) and deionized water (6 mL). The suspension was left at 
rest for 24 h, after which the supernatant was removed and the solid was 

dried at 80 oC in an oven.  
 

2.2. Catalyst characterization 

 
Power X-ray diffraction patterns (XRD) were collected with a Shimadzu 

XRD-6000 diffractometer (Cu Kα 1.54 Ǻ, 40kV and 20mA). Scanning 

electron microscopy and energy dispersive X-ray elemental analysis 
(SEM/EDX) was performed with a JEOL/JSM-6360LV microscope 

operating at 110kV. Transmission electron microscopy (TEM) was carried 

out with a JEOL-JEM 1200 EWII microscope operating at 120 kV and the 
infrared vibrational spectra were collected with a BIO-RAD 3500 GX 

spectrometer, scanning from 400 to 4000 cm-1 using a KBr pellet with 4 cm-

1 resolution and accumulation of 32 scans. 

 

2.3. Catalytic activity 

 
Palmitic acid esterification reaction using the solids Mag and Mag/Si 

was performed under solvothermal conditions inside an oven using a 15 mL 

closed Teflon cup fitted into a closed stainless steel reactor vessel (Santos 
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et al., 2015). Reactions were conducted using a nMeOH/nacid molar ratio of 12 and 

10 wt.% of catalyst in relation to the acid weight, with the thermal bath set to 

120 °C. After cooling to room temperature, the catalyst was separated from the 

reaction mixture (using a simple magnet) and recovered for reuse (Santos et al., 

2015). To this end, the catalysts were washed with methanol and ethanol (10 
mL) (Ma et al., 1999), dried at 120 °C, and their recycling capacity was 

evaluated in sequential reactions using the same experimental conditions. The 

excess alcohol was removed by evaporation under low pressure, and the 
conversion of the fatty acid to alkyl esters was performed by titration of the 

remaining acid using a 0.01 mol L−1 NaOH standard solution, while methyl 

palmitate was the only produced alkyl ester expected in this reaction. 

 

3. Results and Discussion 

 
3.1. Catalyst characterization 

 

A schematic illustration of the synthetic pathway for obtaining Fe3O4/SiO2 
(Mag/Si) is shown in Figure 1. The Fe3O4 magnetic nanoparticles (Mag) were 

synthesized using a simple co-precipitation method from FeCl3 and FeCl2 under 

alkaline conditions (Philipse et al., 1994). To coat the Fe3O4 with silica, a 

reverse microemulsion method using Igepal in cyclohexane was used (Fig. 1). 

The resulting reverse micelles stabilized the Fe3O4 particles, avoiding particles 

agglomeration and also acted as microreactors in the confined sol-gel method, 
where the spherical material was formed by the hydrolysis of TEOS as silica 

source. Coating Fe3O4 with silica particles could improve the stabilization 

under reaction conditions while at the same time maintaining the magnetic 
properties.  

 

 
 

 

 
 

 

 
 

 

 
 

Fig.1. Schematic illustration of the synthesis of the magnetic solid Mag/Si (Fe3O4/SiO2 = Mag/Si). 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Fig.2. Powder X-ray diffraction patterns of Mag solid (Fe3O4) before and after coating with SiO2 

(Fe3O4/SiO2 = Mag/Si). Spinel structure of pure magnetite (Fe3O4) is given by JCPDS card 1-

1111. 

 

 

Figure 2 shows the XRD patterns of the Mag nanoparticles. Mag solid 
exhibited characteristic reflections of spinel structure according to the 

reflections by their indices ((220), (311), (400), (422), (511), and (440)) 

(JCPDS card 1-1111). After coating with silica, the same patterns were 
observed as well as a broad peak around 20 – 30° (2°) and these were attributed 

to amorphous silica, suggesting that Mag particles were successfully coated 

with silica using the simple co-precipitation method while the crystalline 

phase of Fe3O4 remained unchanged. The crystalline size (estimated from 

the Scherrer equation) of the Fe3O4 nanoparticles was also determined from 

the X-ray line broadening using the (311) reflection (Table 1). The particle 

size was very small, around 8 nm. Lemine et al. (2012) reported the 
synthesis of magnetite nanoparticles by sol-gel under ethanol supercritical 

conditions and obtained solids with an average size of 8 nm as well. This 

fact suggests that small Fe3O4 nanoparticles can be synthesized by a simple 
co-precipitation method and such small particles sizes are known to provide 

stronger superparamagnetic properties (Cornell et al., 2003). 

 
 

Table 1. 
 

Structural parameters of Mag
 

and Mag/Si using powder X-ray diffraction data.
 

 

 
Solid

 
d001 

(A)
 

a0 
(A)

 
Dm (nm)

 

Mag
 

2.51
 

8.32
 

8.14
 

Mag/Si
 

2.52
 

8.36
 

7.76
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 Fig.3. FTIR spectra of Mag before and after coating with SiO2

 

to produce the Mag/Si.

 
 
 The solids were investigated by the FTIR spectroscopy as shown in 

Figure 3. The bands at 3500 cm-1

 
and 1600 cm-1

 
can be attributed to O-H 

stretching modes from adsorbed water molecules. Pure Fe3O4

 
(Mag) 

exhibited
 
bands

 
at 634 cm-1, 578 cm-1, and 447 cm-1

 
that are attributable

 
to 

Fe-O stretching vibration (Zhang et al., 2013). The silica coating was 
confirmed by the typical bands observed at 1100 cm-1

 
for νas (Si-O-Si), 955 

cm-1

 
for ν (Si-OH), 802 cm-1

 
for νs

 
(Si-O-Si),

 
and 472 cm-1

 
for δ

 
(Si-O-Si) 

(Lopez et al., 2014; Ucoski et al., 2017).
 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig.4. SEM images of (a) Mag and (b), (c), and (d) Mag/Si particles with different 

magnification values. 
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SEM images are presented in Figure 4. In case of the Mag, the particles did 

not show a definite shape (Fig. 4a). However, after coating with silica, the 

resulting  Mag/Si (Fe3O4/SiO2)  solids  were  spherical (Figs. 4b, 4c, 4d ), as 

expected for silica-coated magnetic particles prepared by the sol-gel hydrolytic 

process in alkaline medium (Stöber et al., 1968). 
According to the TEM images (Fig. 5), both Mag (Fig. 5a) and Mag/Si 

particles (Fig. 5b, c, d) had a spherical morphology. As already mentioned 

above, this was expected in the latter case as a result of Mag coating with 
amorphous silica using the hydrolytic sol-gel process in basic media (Stöber et 

al., 1968). Figures 5c-d also demonstrate that Mag particles (darkest points of 

the images) were completely covered by amorphous silica (Silica - clearer 
image region) (Jacinto et al., 2008; Lopez et al., 2014; Ucoski et al., 2017). 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

Fig.5. TEM images of (a) Mag and (b), (c),
 
and (d) Mag/Si particles with different magnification 

values.
 

 

 

The presence of Mag in the Mag/Si solids was best evidenced by the bright 
and dark field images obtained for the same region of the sample (Fig. 6). In 

the dark field image (Fig. 6b), where only crystalline species were expected to 
diffract, clear areas were observed due to the electron diffraction caused by the 

presence of Mag particles, the only crystalline species in the Mag/Si solids. 

These particles appeared to be homogeneously dispersed in the sample when 
compared with the bright field image (Fig. 6a) (Ucoski et al., 2017). 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 
 

Fig.6. TEM images of Mag/Si particles in (a) bright and (b) dark field. 

 
 

3.2. Catalytic esterification reaction 

 
The catalytic performance of Mag and Mag/Si was evaluated in the palmitic 

acid esterification with methanol under solvothermal conditions (Fig. 7). It has 

been observed that palmitic acid esterification under solvothermal reaction 
conditions (120 °C) led to a dramatic increase in conversion rate compared with 

the conventional conditions (Santos et al., 2015). Both solid catalysts showed  

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Fig.7. Catalytic activity of the magnetic nanoparticles in the esterification of palmitic acid 

with methanol. Conditions: 120 °C, 12:1 (MeOH: palmitic acid), 10 wt.% catalyst, 6 h. The 

No Cat. bar refers to the control reaction without catalyst (Mag or Mag/Si), using only acid 

and alcohol under the same reaction conditions (Jing et al., 2015).

 

 
 

similar conversions, i.e., higher than 60% after 6 h of reaction. However, 

the catalytic activity in terms of mmol of palmitic acid converted 
normalized per g

 

of Mag was more than 3 times higher for Mag/Si because 

it contained only

 

31 wt.% of Fe3O4

 

coated by silica. This result indicated

 

the advantage of coating the nanoparticles with silica. The control reaction 

without any catalyst showed insignificant conversion (less than 5%), 

suggesting that the catalytic activity was

 

due to the presence of Fe3O4.

 

Silica 
solid

 

prepared herein presented

 

low or moderate Brønsted acidity, not 

enough to promote more than 10% conversion after 6 h, indicating the 

superior catalytic activity of pure or silica-coated Fe3O4

 

nano species. 

 

An important feature of the catalytic solids investigated in this work was

 

their easy removal from the reaction medium for reuse by using

 

an external 

magnetic field (a simple magnet), without mass loss, eliminating the need 
for separation steps such as filtering or centrifuging. In terms of processing, 

this means large cost savings, both for equipment and energy consumption 

(Fig.

 

8).

 

The stability and reusability of Mag and Mag/Si solid catalysts 
were also examined (Fig.

 

9

 

and

 

Table 2).

 

 

 

 

Fig.8. Images of the magnetic particles of the core-shell type (Mag/Si): (a) particles dispersed 

in alcohol, and (b) particles dispersed in alcohol after being attracted by an external magnetic 

field. 

 

 

The solid catalysts were recovered after each reaction, exhaustively 
washed with methanol and subsequently reused in further esterification 

runs, which presented similar catalytic performance (Fig.
 
9). The solids 

were characterized after each reaction cycle by XRD and TEM (Figs.
 
10

 

and 11). The results presented in Figure 9
 
highlighted

 
the stability of both 

Mag and Mag/Si solids. The catalytic activity in terms of conversion was 

maintained for up to
 
four cycles. According

 
to the XRD

  
patterns

  
for

  
both 
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Fig.9. Catalytic recycling of (a) Mag and (b) Mag/Si (left axis) and their corresponding crystalline 

size estimated by Sherrer equation values (right axis).

 
 

 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 

Fig.10. Powder X-ray diffraction patterns for (a) Mag and (b) Mag/Si

 

following the recycling 

tests.

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Fig.11. TEM images of Mag;

 

(a) freshly synthesized and (b) after the 4th

 

reaction cycle, as well 

as,

 

(c) fresh Mag/Si and (d) Mag/Si after the 4th

 

reaction cycles.

 

 
 Mag and Mag/Si, the crystalline structure was almost

 
the same, as

 
also

 
reported 

by Zhang et al. (2013). The crystalline size estimated using
 
the Sherrer equation 

(Table 2) showed a slight increase after the third cycle for pure Mag, which 

can be attributed to some aggregation of free particles. However, after coating 

with silica (Mag/Si),
 
the size of the particles was stabilized as was

 
their 

crystalline structure, since the Bragg’s d-spacing of 2.52 Å corresponds to the 

most intensive peak of (311) at 35.42° and the lattice parameters of 8.36 Å were 

basically constant. For the pure nanoparticles, the d-spacing and lattice 
 

 
Table 2. 

 
Structural parameters of Fe3O4 and Fe3O4/SiO2 using powder X-ray diffraction data.

 

 

Catalytic 

Runs
 

Mag
 

Mag/Si
 

d001 
(A)

 
a0 

(A)
 

Dm (nm)
 

d001 
(A)

 
a0 

(A)
 

Dm (nm)
 

1
 

2.51
 

8.32
 

8.14
 

2.52
 

8.36
 

7.76
 

2
 

2.52
 

8.34
 

7.97
 

-
 

-
 

-
 

3
 

2.52
 

8.34
 

8.88
 

2.51
 

8.35
 

7.10
 

4
 

2.56
 

8.49
 

8.74
 

2.52
 

8.37
 

6.84
 

 

 

 
parameters increased after the third cycle, suggesting particle 

agglomeration or changes in the structure of the crystalline phase 

(magnetite Fe3O4 and maghemite γ-Fe2O3) (Zhang et al., 2013). 

 
The palmitic acid esterification reaction catalyzed by para-toluene 

sulfonic acid (PTSA) was also investigated under the same experimental 

conditions used for the catalysts Mag and Mag/Si (thermal conditions, 120 
°C, 6 h,

 

acid/methanol molar ratio of 12:1,

 

and 10% of catalyst in relation 

to the quantity of acid).

 

PTSA is an acid catalyst that present good 

conversion values for esterification reaction (Ma et al., 1999; Hayyan et al., 
2010; Tabatabaei et al., 2015) and has been shown to offer

 

higher

 

catalytic 

activity compared with

 

benzenesulfonic acid and sulfuric acid (Guan et al., 

2009). Under the above-mentioned

 

conditions,

 

the conversion observed 
was 97%, similar to the results reported elsewhere

 

for this reaction under 

different

 

experimental conditions (Aafaqi et al., 2004; Hayyan et al., 2010;

 
Barros et al., 2013; Tabatabaei et al.,

 

2015). In spite of such

 

a high value of 
conversion under

 

acidic homogeneous conditions (homogeneous catalysis), 

acid catalysts

 

generally present some inherent problems, e.g.,

 

higher cost 

(Hayyan et al., 2010) and being

 

slower vs.

 

basic catalyst in solution (Ma et 
al., 1999),

 

corrosion,

 

infeasible recovery/reuse, and the need for catalyst 

neutralization steps

 

contributing

 

to increased production

 

of waste streams 

and consequent deterioration of the

 

environmental

 

aspects of the process

 
(Paiva et al., 2015). 

 
Moreover, Amberlyst 15 resin was also used as solid heterogeneous 

catalyst under similar reaction conditions used for PTSA.

 

It is well 
documented that this ion-exchange resin presents

 

high concentrations

 

of 

acid sites (Hykkerud et al., 2016) and offers a catalytic activity

 

comparable

 
to other catalysts used in

 

homogeneous and heterogeneous catalysis. In fact, 

under the

 

experimental conditions

 

applied herein

 

(i.e., solvothermal),

 

the 

conversion obtained using this solid stood at

 

97.5%. Other studies have also 
reported on the application of

 

this resin as catalyst for heterogeneous 

processes

 

(Barros et al., 2013; Hykkerud et al., 2016). However, it should 

be noted that

 

this resin presents

 

poor thermal stability which could result in 
catalyst degradation and reduced activity

 

after a single use

 

depending on 

the experimental condition (Aafaqi et al., 2004; Hykkerud et al., 2016).

 

This 

would in turn adversely affect the effective reuse of the catalyst.

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 Fig.12. Proposed cooperative mechanism pathway involving Lewis and Brönsted acid sites 

for palmitic acid esterification with methanol (Choudary et al., 2000; Nakagaki et al., 2008; 

Karami et al., 2012).
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Magnetite nanoparticles have been employed as catalyst in many organic 

reactions and this has been attributed to the Lewis acid character of Fe 3d 

orbitals (Koukabi et al., 2011; Karami et al., 2012; Mojtahedi et al., 2012; 

Parella et al., 2012). The esterification reaction follows a Brönsted acid 

catalyzed pathway. However, the presence of Lewis acid sites can promote the 
catalytic strength of Brönsted acids in a cooperative mechanism as illustrated 

in Figure 12. Initially, the Lewis acid sites polarize the alcohol O-H bond 

followed by the abstraction of protons from methanol (1) and, in the next step, 
the Brönsted acid sites combine with the carbonyl oxygen from palmitic acid 

(2), making the carbonyl carbon susceptible to the attack of the electron pairs 

of the intermediate (1) in a nucleophilic reaction (3). The intermediates (4 and 
5) lead to the formation of water, and after the desorption of methyl palmitate 

(6 and 7), the Brönsted and Lewis acid sites are regenerated, therefore 

completing the catalytic cycle (Choudary et al., 2000; Nakagaki et al., 2008; 
Karami et al., 2012). 

 

4. Conclusions 

 

Magnetic Fe3O4
 or Fe3O4/SiO2

 nanoparticles (solids Mag and Mag/Si) 

produced by a simple and inexpensive method exhibited a high catalytic 

activity for the esterification of palmitic acid with methanol under solvothermal 

conditions without the need for the presence of catalytic species traditionally 

used to catalyze this reaction. The developed catalysts were easily recovered 
from the reaction mixture for reuse in new catalytic cycles. The structure of the 

Mag catalytic species was maintained for at least four reaction cycles, and 

coating (Mag/Si) prevented crystal aggregation. Furthermore, the catalytic 
activity in terms of normalized mmol of palmitic acid conversion per g of Mag 

in the Mag/Si catalyst was more than three times higher than that of Mag 

nanoparticles. This finding revealed the advantage of coating the 
nanoparticules with silica. The obtained catalytic properties and stability 

suggested that the developed solids could be effectively used to replace mineral 

acids in some acid-catalyzed reactions such as fatty acid esterification, 
improving process sustainability by reducing costs and minimizing the 

environmental impact of downstream processing. 
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